通俗理解自注意力(self-attention)

谷歌在2017年发表了一篇论文《Attention Is All You Need》,论文中提出了transformer模型,其核心就是self-attention的架构,这一突破性成果不仅洗遍了NLP的任务,也在CV中取得了非常好的效果,有大道至简的感觉。本文通过一个通俗易懂的例子[1]来介绍self-attention。

文章首发个人博客
(注:本文例子完全来在参考文章,包括文章的gif动图,感谢作者的文章)

介绍

接下来将通过一下几个步骤来介绍:

  1. 预处理输入数据
  2. 初始化权重
  3. 计算key,query 和value
  4. 计算输入值的注意力得分
  5. 计算softmax层
  6. 注意力得分与value相乘
  7. 对6中结果加权求和,并得到第一个输出值
  8. 重复4-7,计算其余输入数据的输出值

预处理输入数据


本例中我们选择三个输入值,已经通过embedding处理,得到了三个词向量。

Input 1: [1, 0, 1, 0] 
Input 2: [0, 2, 0, 2]
Input 3: [1, 1, 1, 1]

初始化权重

权重包括三个,分别是query的W_q,key的W_k以及value的W_v,例如这三个权重分别初始化为

W_k矩阵为:

[[0, 0, 1],
 [1, 1, 0],
 [0, 1, 0],
 [1, 1, 0]]

W_q矩阵为:

[[1, 0, 1],
 [1, 0, 0],
 [0, 0, 1],
 [0, 1, 1]]

W_v矩阵为:

[[0, 2, 0],
 [0, 3, 0],
 [1, 0, 3],
 [1, 1, 0]]

计算key,query 和value

有了输入和权重,接下来可以计算每个输入对应的key,query 和value了。

第一个输入的Key为:

               [0, 0, 1]
[1, 0, 1, 0] x [1, 1, 0] = [0, 1, 1]
               [0, 1, 0]
               [1, 1, 0]

第二个输入的Key为:

               [0, 0, 1]
[0, 2, 0, 2] x [1, 1, 0] = [4, 4, 0]
               [0, 1, 0]
               [1, 1, 0]

第三个输入的Key为:

               [0, 0, 1]
[1, 1, 1, 1] x [1, 1, 0] = [2, 3, 1]
               [0, 1, 0]
               [1, 1, 0]

用矩阵的乘法来计算输入的Key为:

               [0, 0, 1]
[1, 0, 1, 0]   [1, 1, 0]   [0, 1, 1]
[0, 2, 0, 2] x [0, 1, 0] = [4, 4, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 3, 1]

同理我们计算value的结果为:

               [0, 2, 0]
[1, 0, 1, 0]   [0, 3, 0]   [1, 2, 3] 
[0, 2, 0, 2] x [1, 0, 3] = [2, 8, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 6, 3]

最后我们计算query的结果:

               [1, 0, 1]
[1, 0, 1, 0]   [1, 0, 0]   [1, 0, 2]
[0, 2, 0, 2] x [0, 0, 1] = [2, 2, 2]
[1, 1, 1, 1]   [0, 1, 1]   [2, 1, 3]

计算输入值的注意力得分

注意力的得分是通过query与每个key结果相乘。例如对于第一个query(红色)分别与三个key(橙色)相乘,得到结果(蓝色)就是注意力得分。



计算结果为:

            [0, 4, 2]
[1, 0, 2] x [1, 4, 3] = [2, 4, 4]
            [1, 0, 1]

计算softmax层

softmax函数直接对上一步中的注意力得分做归一化处理。

softmax([2, 4, 4]) = [0.0, 0.5, 0.5]

得分与value相乘

得到的每个得分值与自身的value直接相乘

1: 0.0 * [1, 2, 3] = [0.0, 0.0, 0.0]
2: 0.5 * [2, 8, 0] = [1.0, 4.0, 0.0]
3: 0.5 * [2, 6, 3] = [1.0, 3.0, 1.5]

对6中结果求和,并得到第一个输出值

上一步骤中输出结果求和就得到第一个输出值

  [0.0, 0.0, 0.0]
+ [1.0, 4.0, 0.0]
+ [1.0, 3.0, 1.5]
-----------------
= [2.0, 7.0, 1.5]

重复4-7,计算其余输入数据的输出值

重复计算4-7,分别得到第二个和第三个输出值



于是三个输入经过self-attention模块,得到了三个输出值。这就是attention模块做的事情,是不是很简单。《Attention Is All You Need》论文中的attention计算公式:

Attention(Q,K, V) = softmax(\frac{QK^T}{\sqrt d_k})V

attention最厉害的地方在于能够捕捉到全局信息,经过这个模块的输出结果,是通过输入结果两两运算得出了权重,再对输入进行加权求和得到了。除了捕捉全局信息,还能并行计算,这就比之前的RNN和CNN厉害多了,怪不得谷歌给这篇论文起名叫做Attention Is All You Need,有这个attention就够了。

参考


  1. https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,491评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,856评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,745评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,196评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,073评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,112评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,531评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,215评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,485评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,578评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,356评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,215评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,583评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,898评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,497评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,697评论 2 335