这个_dyld_start 从哪里来呢?它是怎么寻找到main load等函数入口的呢?
dyld 概念
dyld(the dynamic link editor), 动态链接器,是专门用来加载动态库以及主程序的库.
当kernel做好程序的启动准备工作之后,系统的执行由内核态转换为用户态,由 dyld 首先开始工作,iOS 中用到的所有系统framework都是动态库,比如最常用的UIKit.framework,Foundation.framework等都是通过dyld加载进来的,那么dyld做了什么操作呢?
#if __arm64__
.data
.align 3
__dso_static:
.quad ___dso_handle
.text
.align 2
.globl __dyld_start
__dyld_start:
mov x28, sp
and sp, x28, #~15 // force 16-byte alignment of stack
mov x0, #0
mov x1, #0
stp x1, x0, [sp, #-16]! // make aligned terminating frame
mov fp, sp // set up fp to point to terminating frame
sub sp, sp, #16 // make room for local variables
#if __LP64__
ldr x0, [x28] // get app's mh into x0
ldr x1, [x28, #8] // get argc into x1 (kernel passes 32-bit int argc as 64-bits on stack to keep alignment)
add x2, x28, #16 // get argv into x2
#else
ldr w0, [x28] // get app's mh into x0
ldr w1, [x28, #4] // get argc into x1 (kernel passes 32-bit int argc as 64-bits on stack to keep alignment)
add w2, w28, #8 // get argv into x2
#endif
adrp x4,___dso_handle@page
add x4,x4,___dso_handle@pageoff // get dyld's mh in to x4
adrp x3,__dso_static@page
ldr x3,[x3,__dso_static@pageoff] // get unslid start of dyld
sub x3,x4,x3 // x3 now has slide of dyld
mov x5,sp // x5 has &startGlue
// call dyldbootstrap::start(app_mh, argc, argv, slide, dyld_mh, &startGlue)
bl __ZN13dyldbootstrap5startEPK12macho_headeriPPKclS2_Pm
mov x16,x0 // save entry point address in x16
#if __LP64__
ldr x1, [sp]
#else
ldr w1, [sp]
#endif
cmp x1, #0
b.ne Lnew
// LC_UNIXTHREAD way, clean up stack and jump to result
#if __LP64__
add sp, x28, #8 // restore unaligned stack pointer without app mh
#else
add sp, x28, #4 // restore unaligned stack pointer without app mh
#endif
// call dyldbootstrap::start(app_mh, argc, argv, slide, dyld_mh, &startGlue)
bl __ZN13dyldbootstrap5startEPK12macho_headeriPPKclS2_Pm
从注释中,可以看到dyldbootstrap::start 函数是会被调用的,接下来从dyldInitialzation.cpp 这个文件的start 函数中的解释可以找到这个函数就是我们要找到的dyld的启动函数
//
// This is code to bootstrap dyld. This work in normally done for a program by dyld and crt.
// In dyld we have to do this manually.
//
uintptr_t start(const struct macho_header* appsMachHeader, int argc, const char* argv[],
intptr_t slide, const struct macho_header* dyldsMachHeader,
uintptr_t* startGlue)
{
// if kernel had to slide dyld, we need to fix up load sensitive locations
// we have to do this before using any global variables
slide = slideOfMainExecutable(dyldsMachHeader);
bool shouldRebase = slide != 0;
#if __has_feature(ptrauth_calls)
shouldRebase = true;
#endif
if ( shouldRebase ) {
rebaseDyld(dyldsMachHeader, slide);
}
// allow dyld to use mach messaging
mach_init();
// kernel sets up env pointer to be just past end of agv array
const char** envp = &argv[argc+1];
// kernel sets up apple pointer to be just past end of envp array
const char** apple = envp;
while(*apple != NULL) { ++apple; }
++apple;
// set up random value for stack canary
__guard_setup(apple);
#if DYLD_INITIALIZER_SUPPORT
// run all C++ initializers inside dyld
runDyldInitializers(dyldsMachHeader, slide, argc, argv, envp, apple);
#endif
// now that we are done bootstrapping dyld, call dyld's main
uintptr_t appsSlide = slideOfMainExecutable(appsMachHeader);
return dyld::_main(appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}
- slideOfMainExecutable:这个方法是获取该次运行的ASLR
static uintptr_t slideOfMainExecutable(const struct macho_header* mh)
{
const uint32_t cmd_count = mh->ncmds;
const struct load_command* const cmds = (struct load_command*)(((char*)mh)+sizeof(macho_header));
const struct load_command* cmd = cmds;
for (uint32_t i = 0; i < cmd_count; ++i) {
if ( cmd->cmd == LC_SEGMENT_COMMAND ) {
const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd;
if ( (segCmd->fileoff == 0) && (segCmd->filesize != 0)) {
return (uintptr_t)mh - segCmd->vmaddr;
}
}
//没有符合条件的话,就继续遍历下一个command_PAGEZERO->_TEXT_DATA_LINKEDIT
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
}
return 0;
}
从mach-o 头文件中获取
struct mach_header_64 {
uint32_t magic; /* 魔数,用于快速确认该文件用于64位还是32位 */
cpu_type_t cputype; /* CPU类型,比如 arm */
cpu_subtype_t cpusubtype; /* CPU对应的具体类型,比如arm64、armv7 */
uint32_t filetype; /* 文件类型,比如可执行文件、库文件、Dsym文件 */
uint32_t ncmds; /* 加载命令条数 */
uint32_t sizeofcmds; /* 所有加载命令的大小 */
uint32_t flags; /* 标志位该字段用位表示二进制文件支持的功能,
主要是和系统加载,链接相关 */
uint32_t reserved; /* 保留字段 */
};
结合MachOView工具,可以知道这个方法就是用来求偏移地址的大致的意思就是传递一个mach-header进来这个方法,然后获取loadCommand方法数目
const struct load_command* const cmds = (struct load_command*)(((char*)mh)+sizeof(macho_header));
const struct load_command* cmd = cmds;
这两条指令的意思就是跳过header内存地址,赋值cmd 的值为指针指向的load Commands的开始
然后执行for循环,进入for循环,首先判断cmd->cmd 是否等于LC_SEGMENT_COMMAND(LC_SEGMENT_64),然后const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd; 转化为_PAGEZERO,_TEXT等macho_segment_command 等命令,之后判断其file offset == 0和 file size > 0,如果成立的话,return (uintptr_t)mh - segCmd->vmaddr(在_TEXT的时候就成立了);退出循环
- rebaseDyld:这个方法的大概意思就是在获取到ASLR的地址之后,需要对mach-header二进制文件进行重定向,让相关的函数,变量指向正确的地址
if ( shouldRebase ) {
rebaseDyld(dyldsMachHeader, slide);
}
- mach_init(); 消息初始化
- __guard_setup(apple);栈溢出保护
加下来就是dyld的重头戏了dyld::main函数,代码太长,不方便粘贴,所以这里先用文字大概叙述一下,然后再分段代码分析
dyld::main 函数大概做了如下几点
- 1.设置运行环境
- 2.加载共享缓存
- 3.加载动态库
- 4.链接主程序
- 5.链接动态库
- 6.初始化程序
- 7.返回入口地址
- 1.设置运行环境
// Grab the cdHash of the main executable from the environment
uint8_t mainExecutableCDHashBuffer[20];
const uint8_t* mainExecutableCDHash = nullptr;
if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
mainExecutableCDHash = mainExecutableCDHashBuffer;
// Trace dyld's load
notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
#if !TARGET_IPHONE_SIMULATOR
// Trace the main executable's load
notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
CRSetCrashLogMessage("dyld: launch started");
setContext(mainExecutableMH, argc, argv, envp, apple);
// Pickup the pointer to the exec path. // 获取主程序路径
sExecPath = _simple_getenv(apple, "executable_path");
// <rdar://problem/13868260> Remove interim apple[0] transition code from dyld
if (!sExecPath) sExecPath = apple[0];
if ( sExecPath[0] != '/' ) {
// have relative path, use cwd to make absolute
char cwdbuff[MAXPATHLEN];
if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
// maybe use static buffer to avoid calling malloc so early...
char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
strcpy(s, cwdbuff);
strcat(s, "/");
strcat(s, sExecPath);
sExecPath = s;
}
}
- 2.加载共享缓存
// load shared cache
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
#if TARGET_IPHONE_SIMULATOR
// <HACK> until <rdar://30773711> is fixed
gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
// </HACK>
#endif
if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
mapSharedCache();
}
checkSharedRegionDisable是检查共享缓存是否禁用,里面可以看到一行注释,iOS 必须开启共享缓存才能运行.
- 3.加载主程序
try {
// add dyld itself to UUID list
addDyldImageToUUIDList();
#if SUPPORT_ACCELERATE_TABLES
#if __arm64e__
// Disable accelerator tables when we have threaded rebase/bind, which is arm64e executables only for now.
if (sMainExecutableMachHeader->cpusubtype == CPU_SUBTYPE_ARM64_E)
sDisableAcceleratorTables = true;
#endif
bool mainExcutableAlreadyRebased = false;
if ( (sSharedCacheLoadInfo.loadAddress != nullptr) && !dylibsCanOverrideCache() && !sDisableAcceleratorTables && (sSharedCacheLoadInfo.loadAddress->header.accelerateInfoAddr != 0) ) {
struct stat statBuf;
if ( ::stat(IPHONE_DYLD_SHARED_CACHE_DIR "no-dyld2-accelerator-tables", &statBuf) != 0 )
sAllCacheImagesProxy = ImageLoaderMegaDylib::makeImageLoaderMegaDylib(&sSharedCacheLoadInfo.loadAddress->header, sSharedCacheLoadInfo.slide, mainExecutableMH, gLinkContext);
}
reloadAllImages:
#endif
CRSetCrashLogMessage(sLoadingCrashMessage);
// instantiate ImageLoader for main executable
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
gLinkContext.mainExecutable = sMainExecutable;
gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);
}
- 4.加载插入的动态库
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
// record count of inserted libraries so that a flat search will look at
// inserted libraries, then main, then others.
// 记录插入的动态库数量
sInsertedDylibCount = sAllImages.size()-1;
// link main executable
// 第五步 链接主程序
gLinkContext.linkingMainExecutable = true;
//可以尝试在xcode argument中加入这个参数,并设置为1,可以看到会多了很多动态库的输出信息
- 6.链接动态库
// Bind and notify for the inserted images now interposing has been registered
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
}
}
一步将前面调用 addImage()函数保存在sAllImages 中的动态库列表循环调用 link进行链接,然后调registerInterposing注册符号替换. 注意这里的 i+1, 因为sAllImages中第一项是主程序,所以取 i+1项.
- 7.初始化程序
CRSetCrashLogMessage("dyld: launch, running initializers");
#if SUPPORT_OLD_CRT_INITIALIZATION
// Old way is to run initializers via a callback from crt1.o
if ( ! gRunInitializersOldWay )
initializeMainExecutable();
#else
// run all initializers
initializeMainExecutable();
#endif
// notify any montoring proccesses that this process is about to enter main()
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
notifyMonitoringDyldMain();
一步由initializeMainExecutable()完成。dyld会优先初始化动态库,然后初始化主程序。该函数首先执行runInitializers(),内部再依次调用processInitializers()、recursiveInitialization(),在recursiveInitialization()函数里找到了 notifySingle();
context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
notifySingle
static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
//dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
std::vector<dyld_image_state_change_handler>* handlers = stateToHandlers(state, sSingleHandlers);
if ( handlers != NULL ) {
dyld_image_info info;
info.imageLoadAddress = image->machHeader();
info.imageFilePath = image->getRealPath();
info.imageFileModDate = image->lastModified();
for (std::vector<dyld_image_state_change_handler>::iterator it = handlers->begin(); it != handlers->end(); ++it) {
const char* result = (*it)(state, 1, &info);
if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
//fprintf(stderr, " image rejected by handler=%p\n", *it);
// make copy of thrown string so that later catch clauses can free it
const char* str = strdup(result);
throw str;
}
}
}
if ( state == dyld_image_state_mapped ) {
// <rdar://problem/7008875> Save load addr + UUID for images from outside the shared cache
if ( !image->inSharedCache() ) {
dyld_uuid_info info;
if ( image->getUUID(info.imageUUID) ) {
info.imageLoadAddress = image->machHeader();
addNonSharedCacheImageUUID(info);
}
}
}
if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
uint64_t t0 = mach_absolute_time();
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
uint64_t t1 = mach_absolute_time();
uint64_t t2 = mach_absolute_time();
uint64_t timeInObjC = t1-t0;
uint64_t emptyTime = (t2-t1)*100;
if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
timingInfo->addTime(image->getShortName(), timeInObjC);
}
}
// mach message csdlc about dynamically unloaded images
if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
notifyKernel(*image, false);
const struct mach_header* loadAddress[] = { image->machHeader() };
const char* loadPath[] = { image->getPath() };
notifyMonitoringDyld(true, 1, loadAddress, loadPath);
}
}
再往下找到sNotifyObjCInit,再去找它的赋值找到registerObjCNotifiers,从函数注释来看是用objc runtime来调的,这块之后再看.在查阅一些资料之后得知,这里的sNotifyObjCInit就是调用 objc 中的 load_images,它调用所有的 load 方法,在调用完 load 方法以后调用了
bool hasInitializers = this->doInitialization(context);
doInitialization又调用了doModInitFunctions, 也就是constuctor方法
这个sNotifyObjCInit 怎么知道是调用objc中的load_images的呢,我们从源码中可以看到这是一个指针函数,那么这个值是从哪里赋值的?
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
// record functions to call
sNotifyObjCMapped = mapped;
sNotifyObjCInit = init;
sNotifyObjCUnmapped = unmapped;
...
}
可以看到是从registerObjCNotifiers这个方法进行赋值的,再接着找registerObjCNotifiers函数调用,最终找到这里:
dyldAPIs.cpp
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped)
{
dyld::registerObjCNotifiers(mapped, init, unmapped);
}
再接着找这个的调用_dyld_objc_notify_register,发现在dyld文件里面没有找到?这个时候我们可以新建一个项目,然后设置一个Symbol断点(_dyld_objc_notify_register)来拦截一下,可以看到是objc_init 调用了这个方法的,我们再去到objc的源码中查看一波
objc-os.mm
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
void
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
mutex_locker_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
- 8.返回函数入口地址
// main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
*startGlue = 0;