分治
说明:在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
解题步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
解题模板:
def func(args):
if 终止条件:
# 终止逻辑块
return
# 拆分子问题
# 求解子问题 调用func(args)
# 合并子问题
举例:
power(x,n) 链接
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。
def myPow(self, x: float, n: int) -> float:
def quickMul(N):
if N == 0:
return 1.0
y = quickMul(N // 2)
return y * y if N % 2 == 0 else y * y * x
return quickMul(n) if n >= 0 else 1.0 / quickMul(-n)
回溯
说明:回溯算法也叫试探法,基本思想是从一条路往前走,能进则进,不能进则退回来,换一条路再试。
解题步骤:
1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
解题模板:
def func(args):
if 终止条件:
# 终止逻辑块
return
# 当前层逻辑
# 进一步, 调用func(args)
# (如果有需要)恢复当前状态
举例:
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例:
输入:4
输出:[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。
提示:
皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
def generateBoard():
board = list()
for i in range(n):
row[queens[i]] = "Q"
board.append("".join(row))
row[queens[i]] = "."
return board
def backtrack(row: int):
if row == n:
board = generateBoard()
solutions.append(board)
else:
for i in range(n):
if i in columns or row - i in diagonal1 or row + i in diagonal2:
continue
queens[row] = i
columns.add(i)
diagonal1.add(row - i)
diagonal2.add(row + i)
backtrack(row + 1)
columns.remove(i)
diagonal1.remove(row - i)
diagonal2.remove(row + i)
solutions = list()
queens = [-1] * n
columns = set()
diagonal1 = set()
diagonal2 = set()
row = ["."] * n
backtrack(0)
return solutions