HashList与HashSet

散列表

也叫哈希表

散列表本质是数组存储,通过 key-value 的形式存储数据,所以当取 value 的时候,实际上取数组某个位置的元素,并且以 key 的 hashCode 作为 value 在数组中的位置。

List vs Set

1、List 是按 add 顺序存储,且元素可以重复,元素有索引,可以根据元素位置进行 get。
2、Set 存储元素无序(hashCode),元素不可重复(HashMap),没有 get 方法,只能通过迭代器获取元素。

private transient HashMap<E,Object> map;
// Dummy value to associate with an Object in the backing Map 
private static final Object PRESENT = new Object(); 
public boolean add(E e) { 
    return map.put(e, PRESENT)==null; 
}

HashMap

  1. 相同的键值对将被覆盖。需保证Key已经 重写equals()
  2. 存储位置与Key的hashcode()相关,需确保 重写hashcode()
equals
    Object:返回==,判断地址
    String:== && 所有字符相等
    
  1. 最多允许一条数据的Key为Null,可允许多条的值为Null
  2. 存储数据的顺序不确定,且可能因为扩容而数据改变
  3. 数组的存储方式在内存的地址是连续的,大小固定,一旦分配不能被其他引用占用。它的特点是查询快,时间复杂度是O(1),插入和删除的操作比较慢,时间复杂度是O(n),链表的存储方式是非连续的,大小不固定,特点与数组相反,插入和删除快,查询速度慢。

原理

image
1. key == Null? Enrty[0] : 步骤2
2. key的 hashCode() 经过两次Hash,特征值是int
3. 对Entry[]的length求余hash & (length-1),得到Entry的index
4. 如果该位置上已经有元素了,就说明存在hash冲突,这样会在index位置生成链表

JDK的String的Hash算法

public int hashCode() { 
    int h = hash; 
    if (h == 0 && value.length > 0) {
        char val[] = value; 
        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        } 
        hash = h; 
    }
    return h; 
} 

选择31是因为它是一个奇素数,如果它做乘法溢出的时候,信息会丢失,而且当和2做乘法的时候相当于移位。
31的一个很好的特性就是做乘法的时候可以被移位和减法代替的时候有更好的性能体现。例如31i相当于是i左移5位减去i,即31i == (i<<5)-i。现代的虚拟内存系统都使用这种自动优化

put方法

1. 判断key是否已经存在,存在则替换,返回旧值
2. 检查容量是否到达阈值threshold
3. 如果元素个数已经达到阈值,则扩容,
    并把原来的元素移动过去。
4.扩容实现:这里会新建一个更大的数组
    并通过transfer方法,移动元素。
5.移动的逻辑:遍历原来table中每个位置的链表,
    并对每个元素进行重新hash,
    在新的newTable找到归宿,并插入。
    
void transfer(Entry[] newTable, boolean rehash) { 
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next; 
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key); 
                } 
            int i = indexFor(e.hash, newCapacity); 
            e.next = newTable[i]; newTable[i] = e; 
            e = next; 
        }
    } 
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容