2024-04-03 高斯混合模型

k-means模型没有对边界附近的点的聚类分配的概率或者不确定性进行度量,显得不够通用。而且,簇模型的形状只能说圆形不够灵活(椭圆形)。k-means的两个缺点:

  • 类的形状缺少灵活性。
  • 缺少簇分配的概率。、

高斯混合模型(Gaussian mixture model,GMM)使用多维高斯分布的混合对输入数据进行建模。predict_prob方法给出任意点属于某个簇的概率。
可以使用全协方差拟合数据。

rng = np.random.RandomState(13)
X_stretched = np.dot(X, rng.randn(2, 2))

gmm = GaussianMixture(n_components=4, covariance_type='full', random_state=42)
plot_gmm(gmm, X_stretched)
e919f0f24fc648dba7bad5a556dfbe10.png

GMM用作密度估计

GMM本质上是一个密度估计算法,是描述数据分布的生成概率模型。
也就是说,GMM为我们提供了生成与输入数据分布类似的新随机数据的方法。作为一种非常方便的建模方法,GMM可以为数据估计出任意维度的随机分布。

使用赤池信息准则(Akaike information criterion,AIC)、贝叶斯信息准则(Bayesian information criterion, BIC)来找最优的n_components。

from sklearn.datasets import make_moons
Xmoon, ymoon = make_moons(200, noise=.05, random_state=0)
plt.scatter(Xmoon[:, 0], Xmoon[:, 1]);

n_components = np.arange(1, 21)
models = [GaussianMixture(n, covariance_type='full', random_state=0).fit(Xmoon)
          for n in n_components]
plt.figure()
plt.plot(n_components, [m.bic(Xmoon) for m in models], label='BIC')
plt.plot(n_components, [m.aic(Xmoon) for m in models], label='AIC')
plt.legend(loc='best')
plt.xlabel('n_components');

案例:使用GMM生成新的数据

使用标准手写数字库生成新的手写数字。

  1. 使用PCA投影保留99.9%的方差,将维度从8\times8=64维降到41维。
  2. 使用AIC估计GMM的成分数量。
  3. 拟合数据,确认收敛,逆变换。
from sklearn.datasets import load_digits
digits = load_digits()
print(digits.data.shape)
def plot_digits(data):
    fig, ax = plt.subplots(10, 10, figsize=(8, 8),
                           subplot_kw=dict(xticks=[], yticks=[]))
    fig.subplots_adjust(hspace=0.05, wspace=0.05)
    for i, axi in enumerate(ax.flat):
        im = axi.imshow(data[i].reshape(8, 8), cmap='binary')
        im.set_clim(0, 16)
plot_digits(digits.data)

from sklearn.decomposition import PCA
pca = PCA(0.999,whiten=True)
data = pca.fit_transform(digits.data)
print(data.shape)

n_components = np.arange(50,210,10)
models = [GaussianMixture(n, covariance_type='full', random_state=0)
          for n in n_components]
aics = [model.fit(data).aic(data) for model in models]
plt.figure()
plt.plot(n_components, aics);

gmm = GaussianMixture(110, covariance_type='full', random_state=0)
gmm.fit(data)
print(gmm.converged_)

data_new,_ = gmm.sample(100)
print(data_new.shape)

digits_new = pca.inverse_transform(data_new)
plot_digits(digits_new)
297f11323c204301b55d5419b02cfaa9.png

参考:
[1]美 万托布拉斯 (VanderPlas, Jake).Python数据科学手册[M].人民邮电出版社,2018.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容