当你想要单细胞分出特定的群数时,试试FindCluster2

获取代码和更佳阅读体验获取,请移步:当你想要单细胞分出特定的群数时,试试FindCluster2

前言

在做单细胞分群时,有时候我们根据文献或者偏好已经有的了预想的细胞群数,那就需要对分辨率一点点地调整,为了更简便地自动化地实现这一过程,小编开发了FindCluster2函数。一起来学习下开发过程吧。

需求分析

首先需要指定想要的cluster数或范围,在默认起始分辨率下运行FindCluster计算当前分辨率下的细胞群数,并于指定的范围进行比较,决定下一步是增加还是减少分辨率还是退出循环,这种数值渐变且低于/高于某值的循环当然就是使用while循环了,简单写了一下:

FindClusters2 <- function(obj, cluster = c(35, 40), verbose = FALSE){
    if(verbose)
        cat("Find suitable resolution, start with 1.\n")
    nCluster = res = 1
    while(nCluster < cluster[1] | nCluster > cluster[2]){
        if(verbose)
            cat("resolution", res, "... ")
        obj <- FindClusters(obj, resolution = res, verbose = FALSE)
        nCluster = length(unique(obj$seurat_clusters))
        if(nCluster < cluster[1]){
            res = res + 0.1
        } else if (nCluster > cluster[2]){
            res = res - 0.1
        } else{            
            break
        }
        if(verbose)
            cat(nCluster, "clusters.\n")
    }
    obj[["best.res"]] = res
    if(verbose)
        cat("Final resolution:", res, "with", nCluster, "clusters.\n")
    resL = list("obj" = obj, "best.res" = res)
    return(resL)
}

默认分辨率设为1,默认步长为0.1。

经过测试,对付一般情况下,足够使用了。但仔细想一想这里代码有两个大的漏洞。

第一,分辨率取值有误。我们知道分辨率的取值范围是大于0的,但是我们代码每个循环都减去固定的一个值,那当指定的细胞群数很少时,需要的分辨率小于0.1时,则分辨率将继续减去0.1,就出bug了。

因此应该控制分辨率的取值范围要大于0,这让我想到了逻辑斯蒂方程,其取值范围时0-1,那我们再乘以10就得到了0-10取值范围的分辨率值,足够我们使用了。

"定义逻辑斯蒂函数"
sigmoid <- function(x) 1 / (1 + exp(-x))

"根据输入值计算分辨率"
res = signif(sigmoid(x) * 10, 3)

第二,有死循环的风险。当指定的细胞群数范围较小或步长较大时,指定的范围有可能被跳过,这将会造成左右无限蹦迪的死循环现象,所以要增加个判断。首先想想,正常情况下,在判断当前细胞群数与指定细胞群数时,大于或小于的情况永远只会出现一种,如果都曾经出现则说明有跳过折返的情况,因此只要判断大于和小于的情况如果都出现过,则抛出错误,提示指定的范围被跳过,并建议扩宽细胞群数范围或减小步长。给每个判断语句下面加个计数器即可。

还有两点可以优化。第一,上面代码最终最佳分辨率是以列表的形式和原始对象输出,这是因为我开始没用找到将最佳分辨率加到对象里的方法。又搜了以下发现:搜索add slot to seurat找到https://github.com/satijalab/seurat/discussions/5617, 第一个方法是定义一个新类,这跟用列表封装也没啥区别了;第二个建议是加入到misc这个slot里面,那么这是slot是干什么的?搜索misc slot seurat得到https://mojaveazure.github.io/seurat-object/reference/Misc.htmlmiscellaneous意思是杂七杂八的东西,所以这里你可以放任何东西。

类内元素的赋值提取也有两种方法,一种直接类似于列表的提取方法,另一种是使用类成员函数

"赋值"
obj@misc[["best.resolution"]] = res
Misc(obj, slot = "best.resolution") <- res

"提取"
obj@misc[["best.resolution"]]
Misc(obj, slot = "best.resolution")

死去的C++突然开始攻击我。。。

第二,可指定初始分辨率。对于经验丰富的人或者已经经过几轮筛选的情况下,可能已经有了大概的分辨率的取值范围,那从这个值开始计算的话,速度会快很多。因为我们是通过逻辑斯蒂方程计算的分辨率,那得到特定分辨率时的x值就要使用其反函数了,也很容易计算:

x = -log(10/res - 1)

最终代码

FindClusters2 <- function(obj, cluster.range = c(35, 40), by = 0.1, res = 1, verbose = FALSE){
    if(verbose)
        cat("Find suitable resolution, start with", res, "\n")

    if(length(cluster.range) == 1){
        cluster.range = c(cluster.range, cluster.range)
    }

    sigmoid <- function(x) 1 / (1 + exp(-x))
    x = -log(10/res - 1)
    plusCounter = minusCounter = 0
    nCluster = 1
    while(nCluster < cluster.range[1] | nCluster > cluster.range[2]){
        if(verbose)
            cat("resolution", res, "... ")
        obj <- FindClusters(obj, resolution = res, verbose = FALSE)
        nCluster = length(unique(obj$seurat_clusters))

        if(nCluster < cluster.range[1]){
            x = x + by
            plusCounter = plusCounter + 1
        } else if (nCluster > cluster.range[2]){
            x = x - by
            minusCounter = minusCounter + 1
        } else{            
            break
        }
        res = signif(sigmoid(x) * 10, 3)
        if(plusCounter & minusCounter){
            cat("\n")
            stop("Specific cluster ranger was skipped! Try expanding the cluster range or reducing the resolution step size.")
        }

        if(verbose)
            cat(nCluster, "clusters.\n")
    }

    obj@misc[["best.resolution"]] = res
    if(verbose)
        cat("Final resolution:", res, "with", nCluster, "clusters.\n")
    return(obj)
}
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容