05 密码算法

一 、RSA原理

1、 RSA算法基于一个十分简单的数论事实:
将两个大素数相乘十分容易
想要对其乘积进行因式分解极其困难,因此可以将乘积公开作为加密密钥。

2、密钥对的生成步骤
1.随机选择两个不相等的质数p和q2.计算p和q的乘积N
3.计算p-1和q-1的乘积中(N)
4.随机选个整数e,e与m要互质,且0<e<φ(N)
5.计算e的模反元素d
6.公钥是(N,e) ,私钥是(N,d)

3、加解密步骤

密文 = 明文 (E次方)mod N (RSA加密)
明文 = 密文 (D次方)mod N (RSA解密)

  1.假设-一个明文数m (0<=m<N)

  2.对明文m加密成密文C

  a. c=m^e mod N3.对密文C解密成明文m

  a. m=c^d mod N

4、举例说明

  1.p=11,q=3

  2. N=pq = 33

  3.中(N) =(p-1)(1-1)=20

  4.选择20的互质数e=3

  5.计算满足ed=1 mod 20的d,也就是模反元素d=7

  6.公钥为(33,3),私钥为(33,7)

  7.假设明文m=8,  (0<8<33)

  8.密文c=m^e mod N=8^3 mod33= 512 mod33= 17 mod33 ,得出c=17

  9.明文m=c^d mod N= 17 ^ 7 mod33= 8 mod33,  得出m=8

二、椭圆曲线密码

椭圆曲线数字签名算法,因其高安全性,目前已广泛应用在比特币、以太坊、超级账本等区块链项目中。

椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。

椭圆曲线在密码学中的使用,是1985年由Neal Koblitz和Victor Miller分别独立提出的。

椭圆曲线

一般,椭圆曲线可以用如下二元三阶方程表示:
  y² = x³ + ax + b,其中a、b为系数。

其形状如下:

image.png

定义椭圆曲线的运算规则

椭圆曲线上的运算规则,由如下方式定义:

加法:过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C

image.png

二倍运算:上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。如下图所示:A + A = 2A = B

image.png

正负取反:将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:

image.png

无穷远点:如果将A与-A相加,过A与-A的直线平行于y轴,可以认为直线与椭圆曲线相交于无穷远点。如下图所示:

image.png

综上,定义了A+B、2A运算,因此给定椭圆曲线的某一点G,可以求出2G、3G(即G + 2G)、4G......。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。此即为椭圆曲线加密算法背后的数学原理。

有限域上的椭圆曲线运算

椭圆曲线要形成一条光滑的曲线,要求x,y取值均为实数,即实数域上的椭圆曲线。但椭圆曲线加密算法,并非使用实数域,而是使用有限域。按数论定义,有限域GF(p)指给定某个质数p,由0、1、2......p-1共p个元素组成的整数集合中定义的加减乘除运算。

假设椭圆曲线为y² = x³ + x + 1,其在有限域GF(23)上时,写作:
  y² ≡ x³ + x + 1 (mod 23)

此时,椭圆曲线不再是一条光滑曲线,而是一些不连续的点,如下图所示。以点(1,7)为例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此还有如下点:

(0,1) (0,22)
  (1,7) (1,16)
  (3,10) (3,13)
  (4,0)
  (5,4) (5,19)
  (6,4) (6,19)
  (7,11) (7,12)
  (9,7) (9,16)
  (11,3) (11,20)
  等等。

另外,如果P(x,y)为椭圆曲线上的点,则-P即(x,-y)也为椭圆曲线上的点。如点P(0,1),-P=(0,-1)=(0,22)也为椭圆曲线上的点。

image.png

计算xG

相关公式如下:
  有限域GF(p)上的椭圆曲线y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,则R(Xr,Yr) = P+Q 由如下规则确定:

Xr = (λ² - Xp - Xq) mod p
  Yr = (λ(Xp - Xr) - Yp) mod p
  其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),假设以(0,1)为G点,计算2G、3G、4G...xG等等,方法如下:

计算2G:
  λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12
  Xr = (12² - 0 - 0) mod 23 = 6
  Yr = (12(0 - 6) - 1) mod 23 = 19
  即2G为点(6,19)

计算3G:
  3G = G + 2G,即(0,1) + (6,19)
  λ = (19 - 1)/(6 - 0) mod 23 = 3
  Xr = (3² - 0 - 6) mod 23 = 3
  Yr = (3(0 - 3) - 1) mod 23 = 13
  即3G为点(3, 13)

同理计算4G、5G...xG,分布如下图:

image.png

椭圆曲线加解密算法原理

建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下:

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

公钥加密:
  选择随机数r,将消息M生成密文C,该密文是一个点对,即:
  C = {rG, M+rK},其中K为公钥

私钥解密:
  M + rK - k(rG) = M + r(kG) - k(rG) = M
  其中k、K分别为私钥、公钥。

椭圆曲线签名算法原理

椭圆曲线签名算法,即ECDSA。
  设私钥、公钥分别为k、K,即K = kG,其中G为G点。

私钥签名:
  1、选择随机数r,计算点rG(x, y)。
  2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。
  3、将消息M、和签名{rG, s}发给接收方。

公钥验证签名:
  1、接收方收到消息M、以及签名{rG=(x,y), s}。
  2、根据消息求哈希h。
  3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。

原理如下:
  hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s
  = r(h+xk)G / (h+kx) = rG

Go语言中椭圆曲线的实现

椭圆曲线的接口定义:

type Curve interface {
    //获取椭圆曲线参数
    Params() *CurveParams
    //是否在曲线上
    IsOnCurve(x, y *big.Int) bool
    //加法
    Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
    //二倍运算
    Double(x1, y1 *big.Int) (x, y *big.Int)
    //k*(Bx,By)
    ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
    //k*G, G为基点
    ScalarBaseMult(k []byte) (x, y *big.Int)
}

椭圆曲线的接口实现:

type CurveParams struct {
    //有限域GF(p)中质数p
    P       *big.Int
    //G点的阶
    //如果存在最小正整数n,使得nG=O∞,则n为G点的阶
    N       *big.Int
    //椭圆曲线方程y²= x³-3x+b中常数b
    B       *big.Int
    //G点(x,y)
    Gx, Gy  *big.Int
    //密钥长度
    BitSize int
    //椭圆曲线名称
    Name    string
}

func (curve *CurveParams) Params() *CurveParams {
    //获取椭圆曲线参数,即curve,代码略
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
    //是否在曲线y²=x³-3x+b上,代码略
}

func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
    //加法运算,代码略
}

func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
    //二倍运算,代码略
}

func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
    //k*(Bx,By),代码略
}

func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
    //k*G, G为基点,代码略
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342