Python 数据分析实例:Pandas分析问卷选择率

开发环境:win10,python3,jupyter notebook
所用到的分析excel表:https://pan.baidu.com/s/1I-xbJSXmIX1Ii9MO1HT19w,提取码:ztsh


一、开发环境的搭设

  • 安装pandas库
    一个非常强大python的数据分析库,拥有Series 与 DataFrame 两种数据结构。
pip install pandas  
  • 安装 jupter notebook
    一个基于浏览器的交互式的笔记本,使得python编写更加便捷,特别适合边分析边写代码,很适合进行数据分析与可视化图形处理。
pip install jupyter
  • 修改jupyter notebook 默认的工作目录
    在python3的安装目录中找到:python3\Scripts\ jupyter-notebook.exe
    双击exe应用程序即可进行工作,但是默认的工作目录也在python安装目录中,不是很方便,可以进行修改为自己的workspace。将exe快捷方式发送至桌面,右键属性,在起始位置输入自己的工作目录,如图:
    jupyter notebook-修改默认工作目录.png

    至此,常规的环境已经搭设完毕,还可以进行jupyter notebook,请在网上自行搜索美化主题。

二、读取数据

我们需要读取两个表格:
(1)学生的作答选择情况,主要由题号及选择的答案组成
(2)题库的模板情况,主要由问题与选项情况组成
最终想要的结果:学生每道题目的各选项的选择率表格

  • 用DataFrame数据格式读取excel表:
import pandas as pd # 导入pandas模块
from pandas import Series,DataFrame   
pd.set_option('display.max_columns', None)  # 显示所有的列
pd.set_option('display.max_rows', None)    # 显示所有的行
filename1 = '体育问卷-测试--作答情况.xls'
df1 = pd.read_excel(filename1,index_col=0)  # index_col 设置默认的列索引
df1.head(16)      # 默认显示前5行,这里显示16行
  • 代码结束运行(Shift+回车)结果:


    载入excel1.png

    同样的,读取另外一个excel表格:

filename2 = '体育问卷导入模版.xlsx'
df2 = pd.read_excel(filename2)
df2.head()

Shift+回车 结果:


载入excel2.png

三、数据清洗与筛选

  • 数组的行列数
df1.shape  # 输出一个长度为2的列表,第一个是行数,第二个是列数
  • 丢弃重复项
df1 = df1.drop_duplicates(subset='personID',keep='first')
# 返回删除重复的‘userID’列,保留第一个(first)
  • 寻找空值项
df1.isnull()
df2.isnull()
  • 将df2中的空值填补为0
df2 = df2.fillna(value=0)

四、DataFrame中选取数据与操作数据

  • 两个数据表中的题目号进行对应
    对比发现 df2中的‘题库id’中的题号为纯数字,而df1中最上一列的column题号为‘q_ +数字’ 的格式,因此要进行对应。直接应用map函数进行:
# 将题库中的题号与作答情况博表格中的题号进行对应
df2['题库id'] = df2['题库id'].map(lambda x:'q_'+str(x))
# 由于需要用题库id进行索引,因此重新设置df2的索引
df2 = df2.set_index('题库id')

对于DataFrame应用函数主要有三种:
(1)apply():是一种让函数作用于列或者行的操作
(2)applymap() :是一种让函数作用于DataFrame每一个元素的操作
(3)map():是一种让函数作用于Series每一个元素的操作

  • 用列表确定所有题目的题号
Columns = []  
for i in df1.columns:
    if str(i).startswith('q'):      #题目标号均是由q字母开头
        Columns.append(str(i))
  • 确定最终数组的索引情况:
INDEX1 = ['题干','题目选项','选项编号','总选择率']
unique_school= list(df1['schoolName'].unique())   # 将所有的学校转为一个列表
Index = INDEX1 + unique_school     # 确定最终DF的索引index
  • 确定最大的选项标号:
ABC = []
for i in df2.columns:
    if len(i) == 1:   # 判断字符串的长度是否为1
        ABC.append(i)
ABC           # 确定最大的选项号

五、分析逻辑

  • 自定义分析选择率的函数
def count_select(df):
    total = df.shape[0]  # 列数即为作答的人数
    result = {}     # 定义一个空字典
    String=''
    for i in df:
        String = String + i
    for i in String:
        result[i] = "%.2f%%" % (String.count(i)/total*100)  # 将小数转化为百分数并保留两位
    return result                                           # 返回这个字典
  • 由于部分选项选择率为0,直接通过字典的健值输出会报错,因此,自定义一个字典与选项输出函数,例如当‘B’选项不在字典中,B的选择率其实就是0
def get_selection(dirs,j):
    if j in dirs.keys():
        return dirs[j]
    else:
        return 0
  • 有了这两个函数,我们就可以设计最终的函数了。其实就是分学校进行统计,再分不同的题目进行分析,涉及到两个循环。
df_merge = []
for i in Columns:
    dirs = {}
    for j in ABC:
        if df2.loc[i,j] != 0:
            dirs_key = i+'_'+j
            dirs[dirs_key] = [df2.loc[i,'题目标题']]   # 加入题干,首次组装为列表
            dirs[dirs_key].append(df2.loc[i,j])    # 加入题目选项
            dirs[dirs_key].append(j)  # 加入选项
            # dirs[dirs_key].append(count_select(df1[i])[j])  # 根据选项增总选项的选择率
            dirs[dirs_key].append(get_selection(count_select(df1[i]),j))
            for school in unique_school:
            # 根据学校加入学校的选择率
                dirs[dirs_key].append(
                    get_selection(
                        count_select(
                            df1[i].loc[df1['schoolName'].isin([school])]),j))
    df_merge.append(pd.DataFrame(dirs,index=Index)) 
# 将字典转化为DataFrame
  • 最终,合并所有的DataFrame
df = df_merge[0]
for i in range(1,len(df_merge)):
    df = df.join(df_merge[i])
df

最后我们可以看到各个题目的选择率了:


最终选择率.png
  • 最后一步,我们将得到的DataFrame存储到excel中,以便进一步分析:
outfile = "xuanzelv.xlsx"
df.to_excel(outfile)

我们的目录此时就出现了xuanzelv.xlsx文件了

如果输出时报错,缺少一些模块,直接用pip install 安装就可以了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容