Tensorflow slim库使用小记

转自Tensorflow slim库使用小记

看fensorflow的书发现使用的是slim库,那就要研究slim的常用函数,这个文章写的很好,转一下哈。

slim库的导入:

import tensorflow as tf
import tensorflow.contrib.slim as slim

常用函数:

与tensorflow自带的函数相比,slim能够让我们不用重复写函数的参数。那么函数的参数写在哪里呢?核心方法就是slim.arg_scope

slim.arg_scope

def arg_scope(list_ops_or_scope, **kwargs)
 list_ops_or_scope:要用的函数的作用域,可以在需要使用的地方用@add_arg_scope 声明
 **kwargs: keyword=value 定义了list_ops中要使用的变量

也就是说可以通过这个函数将不想重复写的参数通过这个函数自动赋值。

示例:
import tensorflow.contrib.slim as slim
@slim.add_arg_scope
def hh(name, add_arg):
    print("name:", name)
    print("add_arg:", add_arg)

with slim.arg_scope([hh], add_arg='this is add'):
    hh('test')
#结果:
#name: test
#add_arg: this is add

进入add_arg_scope函数查看代码可知:

def add_arg_scope(func):
  """Decorates a function with args so it can be used within an arg_scope.

  Args:
    func: function to decorate.

  Returns:
    A tuple with the decorated function func_with_args().
  """
  def func_with_args(*args, **kwargs):
    current_scope = _current_arg_scope()
    current_args = kwargs
    key_func = _key_op(func)
    if key_func in current_scope:
      current_args = current_scope[key_func].copy()
      current_args.update(kwargs)
    return func(*args, **current_args)
  _add_op(func)
  setattr(func_with_args, '_key_op', _key_op(func))
  return tf_decorator.make_decorator(func, func_with_args)

其实就是看看你调用的是那个函数,给参数中添加你之前赋值的参数。

之后是使用slim构建神经网络常用的函数。

slim.conv2d

slim.conv2d是对tf.conv2d的进一步封装。常见调用方式:

net = slim.conv2d(inputs, 256, [3, 3], stride=1, scope='conv1_1')

源代码:

@add_arg_scope
def convolution(inputs,num_outputs,
                kernel_size,
                stride=1,
                padding='SAME',
                data_format=None,
                rate=1,
                activation_fn=nn.relu,
                normalizer_fn=None,
                normalizer_params=None,
                weights_initializer=initializers.xavier_initializer(),
                weights_regularizer=None,
                biases_initializer=init_ops.zeros_initializer(),
                biases_regularizer=None,
                reuse=None,
                variables_collections=None,
                outputs_collections=None,
                trainable=True,
                scope=None)

常用的有:

padding : 补零的方式,例如'SAME'
activation_fn : 激活函数,默认是nn.relu
normalizer_fn : 正则化函数,默认为None,这里可以设置为batch normalization,函数用slim.batch_norm
normalizer_params : slim.batch_norm中的参数,以字典形式表示
weights_initializer : 权重的初始化器,initializers.xavier_initializer()
weights_regularizer : 权重的正则化器,一般不怎么用到
biases_initializer : 如果之前有batch norm,那么这个及下面一个就不用管了
biases_regularizer : 
trainable : 参数是否可训练,默认为True
scope:你绘制的网络结构图中它属于那个范围内

slim.max_pool2d

net = slim.max_pool2d(net, [2, 2], scope='pool1')

前两个参数分别为网络输入、输出的神经元数量,第三个同上。

slim.batch_norm

def batch_norm(inputs,
               decay=0.999,
               center=True,
               scale=False,
               epsilon=0.001,
               activation_fn=None,
               param_initializers=None,
               param_regularizers=None,
               updates_collections=ops.GraphKeys.UPDATE_OPS,
               is_training=True,
               reuse=None,
               variables_collections=None,
               outputs_collections=None,
               trainable=True,
               batch_weights=None,
               fused=False,
               data_format=DATA_FORMAT_NHWC,
               zero_debias_moving_mean=False,
               scope=None,
               renorm=False,
               renorm_clipping=None,
               renorm_decay=0.99):

这个我没有理解。以下是原博客说的。
接下来说我在用slim.batch_norm时踩到的坑。slim.batch_norm里有moving_mean和moving_variance两个量,分别表示每个批次的均值和方差。在训练时还好理解,但在测试时,moving_mean和moving_variance的含义变了。在训练时,有一些语句是必不可少的:

# 定义占位符,X表示网络的输入,Y表示真实值label
X = tf.placeholder("float", [None, 224, 224, 3])
Y = tf.placeholder("float", [None, 100])

#调用含batch_norm的resnet网络,其中记得is_training=True
logits = model.resnet(X, 100, is_training=True)
cross_entropy = -tf.reduce_sum(Y*tf.log(logits))

#训练的op一定要用slim的slim.learning.create_train_op,只用tf.train.MomentumOptimizer.minimize()是不行的
opt = tf.train.MomentumOptimizer(lr_rate, 0.9)
train_op = slim.learning.create_train_op(cross_entropy, opt, global_step=global_step)

#更新操作,具体含义不是很明白,直接套用即可
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
    updates = tf.group(*update_ops)
    cross_entropy = control_flow_ops.with_dependencies([updates], cross_entropy)

之后的训练都和往常一样了,导出模型后,在测试阶段调用相同的网络,参数is_training一定要设置成False。```
logits = model.resnet(X, 100, is_training=False)

否则,可能会出现这种情况:所有的单个图像分类,最后几乎全被归为同一类。这可能就是训练模式设置反了的问题。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容