Java并发一:Java并发编程三大核心

编写并发程序是比较困难的,因为并发程序极易出现Bug,这些Bug有都是比较诡异的,很多都是没办法追踪,而且难以复现。

要快速准确的发现并解决这些问题,首先就是要弄清并发编程的本质,并发编程要解决的是什么问题。

本文将带你深入理解并发编程要解决的三大问题:原子性、可见性、有序性。

补充知识

硬件的发展中,一直存在一个矛盾,CPU、内存、I/O设备的速度差异。

速度排序:CPU >> 内存 >> I/O设备

为了平衡这三者的速度差异,做了如下优化:

  1. CPU 增加了缓存,以均衡内存与CPU的速度差异;
  2. 操作系统增加了进程、线程,以分时复用CPU,进而均衡I/O设备与CPU的速度差异;
  3. 编译程序优化指令执行次序,使得缓存能够得到更加合理地利用。

可见性

可见性是什么?

一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性。

为什么会有可见性问题?

对于如今的多核处理器,每颗CPU都有自己的缓存,而缓存仅仅对它所在的处理器可见,CPU缓存与内存的数据不容易保证一致。

为了避免处理器停顿下来等待向内存写入数据而产生的延迟,处理器使用写缓冲区来临时保存向内存写入的数据。写缓冲区合并对同一内存地址的多次写,并以批处理的方式刷新,也就是说写缓冲区不会即时将数据刷新到主内存中

缓存不能及时刷新导致了可见性问题。

可见性问题举例
public class Test {
public int a = 0;

public void increase() {
        a++;
    }

public static void main(String[] args) {
final Test test = new Test();
for (int i = 0; i < 10; i++) {
new Thread() {
public void run() {
for (int j = 0; j < 1000; j++)
                        test.increase();
                };
            }.start();
        }

while (Thread.activeCount() > 1) {
// 保证前面的线程都执行完
            Thread.yield();
        }
        System.out.println(test.a);
    }
}

目的:10个线程将inc加到10000。

结果:每次运行,得到的结果都小于10000。

原因分析:
img

假设线程1和线程2同时开始执行,那么第一次都会将a=0 读到各自的CPU缓存里,线程1执行a++之后a=1,但是此时线程2是看不到线程1中a的值的,所以线程2里a=0,执行a++后a=1。

线程1和线程2各自CPU缓存里的值都是1,之后线程1和线程2都会将自己缓存中的a=1写入内存,导致内存中a=1,而不是我们期望的2。所以导致最终 a 的值都是小于 10000 的。这就是缓存的可见性问题。

原子性

原子性是什么?

把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性。

在并发编程中,原子性的定义不应该和事务中的原子性(一旦代码运行异常可以回滚)一样。应该理解为:一段代码,或者一个变量的操作,在一个线程没有执行完之前,不能被其他线程执行。

为什么会有原子性问题?

线程是CPU调度的基本单位。CPU会根据不同的调度算法进行线程调度,将时间片分派给线程。当一个线程获得时间片之后开始执行,在时间片耗尽之后,就会失去CPU使用权。多线程场景下,由于时间片在线程间轮换,就会发生原子性问题

如:对于一段代码,一个线程还没执行完这段代码但是时间片耗尽,在等待CPU分配时间片,此时其他线程可以获取执行这段代码的时间片来执行这段代码,导致多个线程同时执行同一段代码,也就是原子性问题。

线程切换带来原子性问题。

在Java中,对基本数据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行。

i = 0;      // 原子性操作
j = i;      // 不是原子性操作,包含了两个操作:读取i,将i值赋值给j
i++;            // 不是原子性操作,包含了三个操作:读取i值、i + 1 、将+1结果赋值给i
i = j + 1;      // 不是原子性操作,包含了三个操作:读取j值、j + 1 、将+1结果赋值给i

原子性问题举例

还是上文中的代码,10个线程将inc加到10000。假设在保证可见性的情况下,仍然会因为原子性问题导致执行结果达不到预期。为方便看,把代码贴到这里:

public class Test {
public int a = 0;

public void increase() {
        a++;
    }

public static void main(String[] args) {
final Test test = new Test();
for (int i = 0; i < 10; i++) {
new Thread() {
public void run() {
for (int j = 0; j < 1000; j++)
                        test.increase();
                };
            }.start();
        }

while (Thread.activeCount() > 1) {
// 保证前面的线程都执行完
            Thread.yield();
        }
        System.out.println(test.a);
    }
}

目的:10个线程将inc加到10000。
结果:每次运行,得到的结果都小于10000。

原因分析:

首先来看a++操作,其实包括三个操作:

①读取a=0;

②计算0+1=1;

③将1赋值给a;

保证a++的原子性,就是保证这三个操作在一个线程没有执行完之前,不能被其他线程执行。

实际执行时序图如下:
img

关键一步:线程2在读取a的值时,线程1还没有完成a=1的赋值操作,导致线程2的计算结果也是a=1。

问题在于没有保证a++操作的原子性。如果保证a++的原子性,线程1在执行完三个操作之前,线程2不能执行a++,那么就可以保证在线程2执行a++时,读取到a=1,从而得到正确的结果。

有序性

有序性:程序执行的顺序按照代码的先后顺序执行。

编译器为了优化性能,有时候会改变程序中语句的先后顺序。例如程序中:“a=6;b=7;”编译器优化后可能变成“b=7;a=6;”,在这个例子中,编译器调整了语句的顺序,但是不影响程序的最终结果。不过有时候编译器及解释器的优化可能导致意想不到的Bug。

有序性问题举例

Java中的一个经典的案例:利用双重检查创建单例对象

public class Singleton {
  static Singleton instance;
  static Singleton getInstance(){
    if (instance == null) {
      synchronized(Singleton.class) {
        if (instance == null)
          instance = new Singleton();
        }
    }
    return instance;
  }
}

在获取实例getInstance()的方法中,我们首先判断 instance是否为空,如果为空,则锁定 Singleton.class并再次检查instance是否为空,如果还为空则创建Singleton的一个实例。
看似很完美,既保证了线程完全的初始化单例,又经过判断instance为null时再用synchronized同步加锁。但是还有问题!

instance = new Singleton(); 创建对象的代码,分为三步:
①分配内存空间
②初始化对象Singleton
③将内存空间的地址赋值给instance

但是这三步经过重排之后:
①分配内存空间
②将内存空间的地址赋值给instance
③初始化对象Singleton

会导致什么结果呢?

线程A先执行getInstance()方法,当执行完指令②时恰好发生了线程切换,切换到了线程B上;如果此时线程B也执行getInstance()方法,那么线程B在执行第一个判断时会发现instance!=null,所以直接返回instance,而此时的instance是没有初始化过的,如果我们这个时候访问instance的成员变量就可能触发空指针异常。

执行时序图:
img

总结

并发编程的本质就是解决三大问题:原子性、可见性、有序性。

原子性:一个或者多个操作在 CPU 执行的过程中不被中断的特性。由于线程的切换,导致多个线程同时执行同一段代码,带来的原子性问题。

可见性:一个线程对共享变量的修改,另外一个线程能够立刻看到。缓存不能及时刷新导致了可见性问题。

有序性:程序执行的顺序按照代码的先后顺序执行。编译器为了优化性能而改变程序中语句的先后顺序,导致有序性问题。

启发:线程的切换、缓存及编译优化都是为了提高性能,但是引发了并发编程的问题。这也告诉我们技术在解决一个问题时,必然会带来另一个问题,需要我们提前考虑新技术带来的问题以规避风险。

如果你有学到,请给我点赞👍+关注,这是对小编的最大支持!千篇一律的皮囊,万里挑一的灵魂,一个不太一样的写手。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343