素数及完全数的筛选

一、求取100以内的素数

由素数的概念可知,其只能被1和自身整除,也就是说,若该数为i,那么要想其为素数,小于该数且不能被整除的个数必须为i - 2个,因此有如下代码:

N = input("请输入一个整数,以判断求取范围:")
a =[]
for i in range(2,N+1):#对数进行遍历
    m = 0
    for j in range(1,i+1): #找因子
        if i % j == 0:
            continue
        else:
            m = m + 1
    if m == i -2: #当不能被整除的个数为i-2个时,为素数。
        a.append(i)
print(a)

结果如下:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

二、求取1000以内的完全数

由完全数的概念可知,如果一个数的所有的真因子(即除了自身以外的)的和(即因子函数),恰好等于它本身,那么这个数就为完全数。因此求取一定范围的完全数也就是判断真因子之和与该数值的关系的过程。现在贴上代码:

num = input('请输入一个数字,以确定判断范围:')
a = []
for i in range(2,int(num)):
    m = []
    for j in range(1,i):
        if i % j == 0:
            m.append(j)
        print(m)
    b=0
    for n in m:
        b = b + n
    print(b)
    if b == i:
        a.append(i)
print(a) 

最终运行的结果显示,在1000以内,完全数有三个:6,28,496

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容

  • 对于每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意永不停息,所有其它的路都是不完整的,是...
    牧田麻麻阅读 284评论 0 0
  • 在学这门语言之前,先要知道为什么要学习接口自动化呢?想想我们的团队中,是不是开发开发出了大量的外部可以调用的接口?...
    邵琼阅读 760评论 1 2
  • 7月28日,CFO良师益友公益平台与宁波银行北京分行联合组办CFO良师益友公益平台53期公益活动——CFO论道之并...
    CFO良师益友公益项目阅读 300评论 0 0
  • “以人为镜,可以明得失”这句名言是李世民惋惜魏征的离去而发的感慨。他把魏征看作是一面镜子,“魏征没,朕亡一镜矣!”...
    可比克克阅读 532评论 0 1