每天一个知识点:分治算法:选择问题

选择问题的要求是找出含有 N 个元素的表 S 中的第 k 个最小的元素。

基本的算法是简单的递归策略。设 N 大于截止点(cutoff point),在截止点后元素将进行简单的排序,v 是选出的一个元素,叫做枢纽元(pivot)。其余的元素被放在两个集合 S_1S_2 中。S_1含有那些不大于 v 的元素,而 S_2则包含那些不小于 v 的元素。

为了得到一个线性算法,必须保证子问题只是原问题的一部分,而不仅仅只是比原问题少几个元素。这里要解决问题就是如何花费更少的时间来寻找枢纽元。

为得到一个好的最坏情形,关键想法是再用一个间接层。不是从随机元素的样本中找出中项,而是从中项的样本中找出中项。

基本的枢纽元选择算法如下:

  1. 把 N 个元素分成 「N/5」组,5 个元素一组,忽略(最多 4 个)剩余的元素。
  2. 找出每组的中项,得到「N/5」个中项的表 M。
  3. 求出 M 的中项,将其作为枢纽元 v 返回。

上面给出的枢纽元选择法,有一个专业的术语,叫做“五分化中项的中项”。“五分化中项的中项”保证每个递归子问题的大小最多是原问题的大约 70%。对于整个选择算法,枢纽元可以足够快的算出,以确保 O(N) 的运行时间。

定理:使用“五分化中项的中项”的快速选择算法的运行时间为 O(N)

降低比较的平均次数

分治算法还可以用来降低算法预计所需要的比较次数。

设有 N 个数的集合 S 并且要寻找其中第 k 个最小的数 X。我们选择 S 的子集 S‘,令 δ 是某个数,使得计算过程所用的平均比较次数最小化。

找出 S’ 中第 (v_1 = ks/N-δ) 个和第 v2 = ks/N+δ 个最小的元素,几乎可以肯定 S 中的第 k 个元素将落在 v_1v_2 之间,此时,问题变成了 2δ 个元素的选择问题。

经过分析,会发现,若 s\;=\;N^\frac23\;\log\left(\frac13\right)\;N\delta\;=\;N^\frac13\;\log\left(\frac23\right)\;N,则期望的比较次数为 N+k+O(N^\frac23\;\log\left(\frac13\right)\;N),除低次项外它是最优的。(如果 k>N/2,那么我们可以考虑查找第(N-k)个最大元素的对称问题。)

最后一项代表进行两次选择以确定 v_1v_2 的代价。假设采用合理聪明的策略,则划分的平均代价等于 N 加上 v_2 在 S 中的期望阶(expected rank),即 N+k+O(Nδ/s)。如果第 k 个元素在 S‘ 中出现,那么代价就是 O(N)。然而,s 和 δ 已经被选取以保证这种情况以非常低的概率 o(1/N) 发生,因此该可能性的期望代价是 o(1),当它的 N 越来越大时趋向于 0。

这个分析指出,找出中项平均大约需要 1.5N 次比较。当然,该算法为计算 s 需要浮点运算,这在一些机器上可能使该算法减慢速度。不过即使是这样,若能正确实现,则该算法完全能够比得上快速选择实现方法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容