k-means and clustering text documents

http://scikit-learn.org/stable/auto_examples/text/document_clustering.html#sphx-glr-auto-examples-text-document-clustering-py

Two feature extraction methods
TfidfVectorizer
HashingVectorizer 

Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means.

from __future__ import print_function
from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics
from sklearn.cluster import KMeans, MiniBatchKMeans
import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np




# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(message)s')  # 记录日志

# parse commandline arguments
op = OptionParser()  # 得到OptionParser实例对象
op.add_option("--lsa",
              dest="n_components", type="int",
              help="Preprocess documents with latent semantic analysis.")
op.add_option("--no-minibatch",
              action="store_false", dest="minibatch", default=True,
              help="Use ordinary k-means algorithm (in batch mode).")
op.add_option("--no-idf",
              action="store_false", dest="use_idf", default=True,
              help="Disable Inverse Document Frequency feature weighting.")
op.add_option("--use-hashing",
              action="store_true", default=False,
              help="Use a hashing feature vectorizer")
op.add_option("--n-features", type=int, default=10000,
              help="Maximum number of features (dimensions)"
                   " to extract from text.")
op.add_option("--verbose",
              action="store_true", dest="verbose", default=False,
              help="Print progress reports inside k-means algorithm.")

# 执行其父类中的add_option(*args,**kwargs)方法
print(__doc__)
op.print_help()


def is_interactive():
    return not hasattr(sys.modules['__main__'], '__file__')

# work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:
    op.error("this script takes no arguments.")
    sys.exit(1)


# #############################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
    'comp.graphics',
    'sci.space',
]
# Uncomment the following to do the analysis on all the categories
# categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

dataset = fetch_20newsgroups(subset='all', categories=categories,
                             shuffle=True, random_state=42)
# fetch_20newsgroups() Load the filenames and data from the 20 newsgroups dataset.

print("%d documents" % len(dataset.data))
print("%d categories" % len(dataset.target_names))
print()

labels = dataset.target
true_k = np.unique(labels).shape[0]
#  Find the unique elements of an array.
'''
Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, the indices of the unique array that
reconstruct the input array, and the number of times each unique value
comes up in the input array.
'''

print("Extracting features from the training dataset using a sparse vectorizer")
t0 = time()
if opts.use_hashing:
    if opts.use_idf:
        # Perform an IDF normalization on the output of HashingVectorizer
        hasher = HashingVectorizer(n_features=opts.n_features,
                                   stop_words='english', alternate_sign=False,
                                   norm=None, binary=False)
        vectorizer = make_pipeline(hasher, TfidfTransformer())
        """Construct a Pipeline from the given estimators.

            This is a shorthand for the Pipeline constructor; it does not require, and
            does not permit, naming the estimators. Instead, their names will be set
            to the lowercase of their types automatically.
        """

    else:
        vectorizer = HashingVectorizer(n_features=opts.n_features,
                                       stop_words='english',
                                       alternate_sign=False, norm='l2',
                                       binary=False)
else:
    vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features,
                                 min_df=2, stop_words='english',
                                 use_idf=opts.use_idf)
X = vectorizer.fit_transform(dataset.data)

print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()

if opts.n_components:
    print("Performing dimensionality reduction using LSA")
    t0 = time()
    # Vectorizer results are normalized, which makes KMeans behave as
    # spherical k-means for better results. Since LSA/SVD results are
    # not normalized, we have to redo the normalization.
    svd = TruncatedSVD(opts.n_components)


    normalizer = Normalizer(copy=False)
    '''
    
    Each sample (i.e. each row of the data matrix) with at least one
    non zero component is rescaled independently of other samples so
    that its norm (l1 or l2) equals one.

    This transformer is able to work both with dense numpy arrays and
    scipy.sparse matrix (use CSR format if you want to avoid the burden of
    a copy / conversion).

    Scaling inputs to unit norms is a common operation for text
    classification or clustering for instance. For instance the dot
    product of two l2-normalized TF-IDF vectors is the cosine similarity
    of the vectors and is the base similarity metric for the Vector
    Space Model commonly used by the Information Retrieval community.

    '''
    lsa = make_pipeline(svd, normalizer)

    X = lsa.fit_transform(X)

    print("done in %fs" % (time() - t0))

    explained_variance = svd.explained_variance_ratio_.sum()
    print("Explained variance of the SVD step: {}%".format(
        int(explained_variance * 100)))

    print()


# #############################################################################
# Do the actual clustering

if opts.minibatch:
    km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,
                         init_size=1000, batch_size=1000, verbose=opts.verbose)
else:
    km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1,
                verbose=opts.verbose)

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))
print()

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_))
print("Adjusted Rand-Index: %.3f"
      % metrics.adjusted_rand_score(labels, km.labels_))
print("Silhouette Coefficient: %0.3f"
      % metrics.silhouette_score(X, km.labels_, sample_size=1000))

print()


if not opts.use_hashing:
    print("Top terms per cluster:")

    if opts.n_components:
        original_space_centroids = svd.inverse_transform(km.cluster_centers_)
        order_centroids = original_space_centroids.argsort()[:, ::-1]
    else:
        order_centroids = km.cluster_centers_.argsort()[:, ::-1]

    terms = vectorizer.get_feature_names()
    for i in range(true_k):
        print("Cluster %d:" % i, end='')
        for ind in order_centroids[i, :10]:
            print(' %s' % terms[ind], end='')
        print()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容