在pandas中使用数据透视表

什么是透视表?

经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用数据透视表可以快速地进行分类汇总,自由组合字段快速计算,而这些只需要拖拉拽就可以实现。

维基百科对透视表(pivot table)解释是:
A pivot table is a table of statistics that summarizes the data of a more extensive table.
透视表是一种汇总了更广泛表数据的统计信息表。

典型的数据格式是扁平的,只包含行和列,不方便总结信息:


而数据透视表可以快速抽取有用的信息:


pandas也有透视表?

pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。

在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。

pivot_table使用方法:

pandas.pivot_table(*data*, *values=None*, *index=None*, *columns=None*, *aggfunc='mean'*, *fill_value=None*, *margins=False*, *dropna=True*, *margins_name='All'*, *observed=False*) 

参数解释:

  • data:dataframe格式数据
  • values:需要汇总计算的列,可多选
  • index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引
  • columns:列分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的列索引
  • aggfunc:聚合函数或函数列表,默认为平均值
  • fill_value:设定缺失替换值
  • margins:是否添加行列的总计
  • dropna:默认为True,如果列的所有值都是NaN,将不作为计算列,False时,被保留
  • margins_name:汇总行列的名称,默认为All
  • observed:是否显示观测值

注意,在所有参数中,values、index、columns最为关键,它们分别对应excel透视表中的值、行、列:


参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富:


如何使用pivot_table?

下面拿数据练一练,示例数据表如下:


该表为用户订单数据,有订单日期、商品类别、价格、利润等维度。

首先导入数据:

data = pd.read_excel("E:\\订单数据.xlsx")
data.head()

接下来使用透视表做分析:

  1. 计算每个州销售总额和利润总额
result1 = pd.pivot_table(data,index='洲' , values = ['销售额','利润'] , aggfunc = np.sum)
result1.head()
  1. 计算每个洲每个城市每单平均销售量
result2 = pd.pivot_table(data,index=['洲','城市'],aggfunc=np.mean,values=['数量'])
result2.head(20)
  1. 计算每个洲的总销量和每单平均销量
result3 = pd.pivot_table(data,index=['洲'],aggfunc=[np.sum,np.mean],values=['数量'])
result3.head()
  1. 看每个城市(行)每类商品(列)的总销售量,并汇总计算
result4 = pd.pivot_table(data,index=['城市'],columns=['商品类别'],aggfunc=[np.sum],values=['数量'],margins=True)
result4.head()

总结

本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342