前言
Tomcat为了提高性能,在接受到socket传入的字节之后并不会马上进行编码转换,而是保持byte[]
的方式,在用到的时候再进行转换。在tomcat的实现中,MessageBytes
正是byte[]
的抽象。本节我们就来深入了解一下!
如何使用?
我们通过一个简单的例子来看看MessageBytes
是如何使用的。这个例子用于提取byte[]
里面的一个子byte[]
,然后打印输出。
public static void main(String[] args) {
// 构造`MessageBytes`对象
MessageBytes mb = MessageBytes.newInstance();
// 待测试的`byte[]`对象
byte[] bytes = "abcdefg".getBytes(Charset.defaultCharset());
// 调用`setBytes()`对bytes进行标记
mb.setBytes(bytes, 2, 3);
// 转换为字符串进行控制台输出
System.out.println(mb.toString());
}
我们运行一下,看到下面输出,的确和我们预料的一致。
源码解读
无源码无真相,我们这就来分析一下源码。在MessageBytes里面一共有四种类型,用于表示消息的类型。
-
T_NULL
表示空消息,即消息为null
-
T_STR
表示消息为字符串类型 -
T_BYTES
表示消息为字节数组类型 -
T_CHARS
表示消息为字符数组类型
// primary type ( whatever is set as original value )
private int type = T_NULL;
public static final int T_NULL = 0;
/** getType() is T_STR if the the object used to create the MessageBytes
was a String */
public static final int T_STR = 1;
/** getType() is T_BYTES if the the object used to create the MessageBytes
was a byte[] */
public static final int T_BYTES = 2;
/** getType() is T_CHARS if the the object used to create the MessageBytes
was a char[] */
public static final int T_CHARS = 3;
接着我们看看构造方法,默认构造方法居然是private类型的,同时提供了工厂方法用于创建MessageBytes
实例。
/**
* Creates a new, uninitialized MessageBytes object.
* Use static newInstance() in order to allow
* future hooks.
*/
private MessageBytes() {
}
/**
* Construct a new MessageBytes instance.
* @return the instance
*/
public static MessageBytes newInstance() {
return factory.newInstance();
}
我们接着看看关键方法setBytes()
,该方法内部调用了ByteChunk.setBytes()
方法,同时设置了type字段
。
// Internal objects to represent array + offset, and specific methods
private final ByteChunk byteC=new ByteChunk();
private final CharChunk charC=new CharChunk();
/**
* Sets the content to the specified subarray of bytes.
*
* @param b the bytes
* @param off the start offset of the bytes
* @param len the length of the bytes
*/
public void setBytes(byte[] b, int off, int len) {
byteC.setBytes( b, off, len );
type=T_BYTES;
hasStrValue=false;
hasHashCode=false;
hasLongValue=false;
}
我们深入去看看ByteChunk.setBytes()
。非常简单,就是设置一下待标识的字节数组
、开始位置
、结束位置
。
private byte[] buff; // 待标记的字节数组
protected int start; // 开始位置
protected int end; // 结束位置
protected boolean isSet; // 是否已经设置过了
protected boolean hasHashCode = false; // 是否有hashCode
/**
* Sets the buffer to the specified subarray of bytes.
*
* @param b the ascii bytes
* @param off the start offset of the bytes
* @param len the length of the bytes
*/
public void setBytes(byte[] b, int off, int len) {
buff = b;
start = off;
end = start + len;
isSet = true;
hasHashCode = false;
}
既然字节数组已经标识过了,那什么时候用呢?我们能想到的自然就是转换为String,而转换的地方一般是调用对象的toString()
方法,我们来看看MessageBytes.toString()
方法。
@Override
public String toString() {
if( hasStrValue ) {
return strValue;
}
switch (type) {
case T_CHARS:
strValue=charC.toString();
hasStrValue=true;
return strValue;
case T_BYTES:
strValue=byteC.toString();
hasStrValue=true;
return strValue;
}
return null;
}
首先判断是否有缓存的字符串,有的话就直接返回,这也是提高性能的一种方式。其次是根据type
来选择不同的*Chunk
,然后调用其toString()
方法。那么我们这儿选择ByteChunk.toString()
来分析。
@Override
public String toString() {
if (null == buff) {
return null;
} else if (end - start == 0) {
return "";
}
return StringCache.toString(this);
}
调用了StringCache.toString(this)
。StringCache
,顾名思义,就是对字符串进行缓存,不过本节我们主要分析MessageBytes
,所以会忽略其缓存的代码。下面来看看这个方法,该方法非常长,前方高能!
public static String toString(ByteChunk bc) {
// If the cache is null, then either caching is disabled, or we're
// still training
if (bcCache == null) {
String value = bc.toStringInternal();
if (byteEnabled && (value.length() < maxStringSize)) {
// If training, everything is synced
synchronized (bcStats) {
// If the cache has been generated on a previous invocation
// while waiting for the lock, just return the toString
// value we just calculated
if (bcCache != null) {
return value;
}
// Two cases: either we just exceeded the train count, in
// which case the cache must be created, or we just update
// the count for the string
if (bcCount > trainThreshold) {
long t1 = System.currentTimeMillis();
// Sort the entries according to occurrence
TreeMap<Integer,ArrayList<ByteEntry>> tempMap =
new TreeMap<>();
for (Entry<ByteEntry,int[]> item : bcStats.entrySet()) {
ByteEntry entry = item.getKey();
int[] countA = item.getValue();
Integer count = Integer.valueOf(countA[0]);
// Add to the list for that count
ArrayList<ByteEntry> list = tempMap.get(count);
if (list == null) {
// Create list
list = new ArrayList<>();
tempMap.put(count, list);
}
list.add(entry);
}
// Allocate array of the right size
int size = bcStats.size();
if (size > cacheSize) {
size = cacheSize;
}
ByteEntry[] tempbcCache = new ByteEntry[size];
// Fill it up using an alphabetical order
// and a dumb insert sort
ByteChunk tempChunk = new ByteChunk();
int n = 0;
while (n < size) {
Object key = tempMap.lastKey();
ArrayList<ByteEntry> list = tempMap.get(key);
for (int i = 0; i < list.size() && n < size; i++) {
ByteEntry entry = list.get(i);
tempChunk.setBytes(entry.name, 0,
entry.name.length);
int insertPos = findClosest(tempChunk,
tempbcCache, n);
if (insertPos == n) {
tempbcCache[n + 1] = entry;
} else {
System.arraycopy(tempbcCache, insertPos + 1,
tempbcCache, insertPos + 2,
n - insertPos - 1);
tempbcCache[insertPos + 1] = entry;
}
n++;
}
tempMap.remove(key);
}
bcCount = 0;
bcStats.clear();
bcCache = tempbcCache;
if (log.isDebugEnabled()) {
long t2 = System.currentTimeMillis();
log.debug("ByteCache generation time: " +
(t2 - t1) + "ms");
}
} else {
bcCount++;
// Allocate new ByteEntry for the lookup
ByteEntry entry = new ByteEntry();
entry.value = value;
int[] count = bcStats.get(entry);
if (count == null) {
int end = bc.getEnd();
int start = bc.getStart();
// Create byte array and copy bytes
entry.name = new byte[bc.getLength()];
System.arraycopy(bc.getBuffer(), start, entry.name,
0, end - start);
// Set encoding
entry.charset = bc.getCharset();
// Initialize occurrence count to one
count = new int[1];
count[0] = 1;
// Set in the stats hash map
bcStats.put(entry, count);
} else {
count[0] = count[0] + 1;
}
}
}
}
return value;
} else {
accessCount++;
// Find the corresponding String
String result = find(bc);
if (result == null) {
return bc.toStringInternal();
}
// Note: We don't care about safety for the stats
hitCount++;
return result;
}
}
看完了,第一感觉就是该方法好长啊!但是通过层层剥减,我们发现关键的地方不多,下面我们把非关键的地方去掉看看。
- 省略掉的缓存部分
- 这儿其实又调回了
ByteChunk
,调用的方法为toStringInternal()
public static String toString(ByteChunk bc) {
// If the cache is null, then either caching is disabled, or we're
// still training
if (bcCache == null) {
String value = bc.toStringInternal();
// 1. 省略掉的缓存部分
return value;
} else {
accessCount++;
// Find the corresponding String
String result = find(bc);
if (result == null) {
// 2. 这儿其实又调回了`ByteChunk`,调用的方法为`toStringInternal()`
return bc.toStringInternal();
}
// Note: We don't care about safety for the stats
hitCount++;
return result;
}
}
我们看看ByteChunk.toStringInternal()
方法,猜想这儿才是关键的地方!
public String toStringInternal() {
if (charset == null) {
charset = DEFAULT_CHARSET;
}
// new String(byte[], int, int, Charset) takes a defensive copy of the
// entire byte array. This is expensive if only a small subset of the
// bytes will be used. The code below is from Apache Harmony.
CharBuffer cb = charset.decode(ByteBuffer.wrap(buff, start, end - start));
return new String(cb.array(), cb.arrayOffset(), cb.length());
}
果然如此!这儿正是根据偏移量
和待提取长度
进行编码提取转换
。
需要特别注意
toStringInternal()
的内部注释,该注释已经给出了使用java.nio.charset.CharSet.decode()
代替直接使用new String(byte[], int, int, Charset)
的原因。因为很多时候,我们往往只提取一个大的byte[]
里面很小的一部分byte[]
。如果使用new String(byte[], int, int, Charset)
,将会对整个byte数组进行拷贝,严重影响性能。
总结
通过阅读tomcat中byte[]转String
的源码,我们看到tomcat开发团队可谓是费尽心思地提高web服务器的性能。转换的思路也很简单,就是通过打标记
+延时提取
的方式来实现按需使用
。通过在编码提取转换
的时候使用了特殊的转换逻辑,让楼主大开眼界!