kafka的生产者和消费者api代码开发

1、生产者代码开发
创建maven工程引入依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.0.1</version>
</dependency>
代码开发
package com.kaikeba.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
//todu:需求:开发kafka生产者代码
public class KafkaProducerStudy {
public static void main(String[] args){
//准备配置属性
Properties props = new Properties();
props.put("bootstrap.servers","node01:9092,node02:9092,node02:9092");
//acks它代表消息确认机制
props.put("acks","all");
//重试的次数
props.put("retrie",0);
//批处理数据的大小,每次写入多少数据到topic
props.put('batch.size",16384);
//可以延长多久发送数据
props.put("linger.ms",1);
//缓冲区的大小
props.put("buffer.memory",33554432);
props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
Producer<String,String> producer=new KafkaProducer<String,String>(props);
for(int i=0;i<100;i++){
//这里需要三个参数,第一个:topic的名称,第二个参数:表示消息的key,第三个参数:消息具体内容
producer.send(new ProducerRecord<String,String>("test",Integer.toString(i),"hello-kafka-"+i));
}

}

}

2、消费者代码开发
自动提交偏移量代码开发
package com.kaikeba.consumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Arrays;
import java.util.Properties;

//todo:需求:开发kafka消费者代码(自动提交偏移量)
public class KafkaConsumerStudy {
public static void main(String[] args) {
//准备配置属性
Properties props = new Properties();
//kafka集群地址
props.put("bootstrap.servers", "node01:9092,node02:9092,node03:9092");
//消费者组id
props.put("group.id", "test");
//自动提交偏移量
props.put("enable.auto.commit", "true");
//自动提交偏移量的时间间隔
props.put("auto.commit.interval.ms", "1000");
//默认是latest
//earliest: 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
//latest: 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
//none : topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
props.put("auto.offset.reset","earliest");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
//指定消费哪些topic
consumer.subscribe(Arrays.asList("test"));
while (true) {
//指定每个多久拉取一次数据
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
手动提交偏移量代码开发
package com.kaikeba.consumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;

//todo:需求:开发kafka消费者代码(手动提交偏移量)
public class KafkaConsumerControllerOffset {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "node01:9092,node02:9092,node03:9092");
props.put("group.id", "controllerOffset");
//关闭自动提交,改为手动提交偏移量
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
//指定消费者要消费的topic
consumer.subscribe(Arrays.asList("test"));

    //定义一个数字,表示消息达到多少后手动提交偏移量
    final int minBatchSize = 20;

    //定义一个数组,缓冲一批数据
    List<ConsumerRecord<String, String>> buffer = new ArrayList<ConsumerRecord<String, String>>();
    while (true) {
        ConsumerRecords<String, String> records = consumer.poll(100);
        for (ConsumerRecord<String, String> record : records) {
            buffer.add(record);
        }
        if (buffer.size() >= minBatchSize) {
            //insertIntoDb(buffer);  拿到数据之后,进行消费
            System.out.println("缓冲区的数据条数:"+buffer.size());
            System.out.println("我已经处理完这一批数据了...");
            consumer.commitSync();
            buffer.clear();
        }
    }
}

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容