译 为什么Netty的FastThreadLocal这么快

性能测试

ThreadLocal一般在多线程环境用来保存当前线程的数据。用户可以很方便地使用,并且不关心、不感知多线程的问题。下面我会用两个场景来展示多线程的问题:

  • 多个线程同时操作一个ThreadLocal
  • 一个线程操作多个ThreadLocal

1. 多个线程同时操作一个ThreadLocal

测试代码分别用于ThreadLocal和FastThreadLocal。 代码如下:

package com.github.shoothzj.demo.netty;

import lombok.extern.slf4j.Slf4j;
import org.junit.Test;

import java.util.concurrent.CountDownLatch;

/**
 * @author hezhangjian
 */
@Slf4j
public class ThreadLocalTest {

    @Test
    public void testThreadLocal() throws Exception {
        CountDownLatch cdl = new CountDownLatch(10000);
        ThreadLocal<String> threadLocal = new ThreadLocal<String>();
        long starTime = System.currentTimeMillis();
        for (int i = 0; i < 10000; i++) {
            new Thread(new Runnable() {

                @Override
                public void run() {
                    threadLocal.set(Thread.currentThread().getName());
                    for (int k = 0; k < 100000; k++) {
                        threadLocal.get();
                    }
                    cdl.countDown();
                }
            }, "Thread" + (i + 1)).start();
        }
        cdl.await();
        System.out.println(System.currentTimeMillis() - starTime + "ms");
    }

}

上述的代码创建了一万个线程,并将线程名设置在ThreadLocal中,随后获取这个值十万次,然后通过CountDownLoatch计算总耗时。运行这个程序大概耗时1000ms。

接下来,测试FastThreadLocal,代码基本上相似:

package com.github.shoothzj.demo.netty;

import io.netty.util.concurrent.FastThreadLocal;
import io.netty.util.concurrent.FastThreadLocalThread;
import lombok.extern.slf4j.Slf4j;
import org.junit.Test;

import java.util.concurrent.CountDownLatch;

/**
 * @author hezhangjian
 */
@Slf4j
public class FastThreadLocalTest {

    @Test
    public void testFastThreadLocal() throws Exception {
        CountDownLatch cdl = new CountDownLatch(10000);
        FastThreadLocal<String> threadLocal = new FastThreadLocal<String>();
        long starTime = System.currentTimeMillis();
        for (int i = 0; i < 10000; i++) {
            new FastThreadLocalThread(new Runnable() {

                @Override
                public void run() {
                    threadLocal.set(Thread.currentThread().getName());
                    for (int k = 0; k < 100000; k++) {
                        threadLocal.get();
                    }
                    cdl.countDown();
                }
            }, "Thread" + (i + 1)).start();
        }

        cdl.await();
        System.out.println(System.currentTimeMillis() - starTime);
    }
}

跑完之后,用时还是差不多1000ms。这证明了两者在这个场景下没有什么差别

2. 单个线程操作多个ThreadLocal

先看ThreadLocal的:

package com.github.shoothzj.demo.netty;

import lombok.extern.slf4j.Slf4j;
import org.junit.Test;

import java.util.concurrent.CountDownLatch;

/**
 * @author hezhangjian
 */
@Slf4j
public class ThreadLocalSingleThreadTest {

    @Test
    public void testThreadLocal() throws Exception {
        CountDownLatch cdl = new CountDownLatch(1);
        int size = 10000;
        ThreadLocal<String> tls[] = new ThreadLocal[size];
        for (int i = 0; i < size; i++) {
            tls[i] = new ThreadLocal<String>();
        }

        new Thread(new Runnable() {
            @Override
            public void run() {
                long starTime = System.currentTimeMillis();
                for (int i = 0; i < size; i++) {
                    tls[i].set("value" + i);
                }
                for (int i = 0; i < size; i++) {
                    for (int k = 0; k < 100000; k++) {
                        tls[i].get();
                    }
                }
                System.out.println(System.currentTimeMillis() - starTime + "ms");
                cdl.countDown();
            }
        }).start();
        cdl.await();
    }

}

上述的代码创建了一万个ThreadLocal,然后设置一个值,随后获取十万次数值,大概耗时2000ms

接下来我们测试FastThreadLocal

    public static void test1() {
        int size = 10000;
        FastThreadLocal<String> tls[] = new FastThreadLocal[size];
        for (int i = 0; i < size; i++) {
            tls[i] = new FastThreadLocal<String>();
        }
        
        new FastThreadLocalThread(new Runnable() {

            @Override
            public void run() {
                long starTime = System.currentTimeMillis();
                for (int i = 0; i < size; i++) {
                    tls[i].set("value" + i);
                }
                for (int i = 0; i < size; i++) {
                    for (int k = 0; k < 100000; k++) {
                        tls[i].get();
                    }
                }
                System.out.println(System.currentTimeMillis() - starTime + "ms");
            }
        }).start();
    }

运行结果大概只有30ms; 可以发现存在了数量级的差距。接下来重点分析ThreadLocal的机制和FastThreadLocal为什么比ThreadLocal快

ThreadLocal机制

我们经常会使用到set和get方法,我们分别查看一下源代码:

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

首先,获取当前的线程,然后获取存储在当前线程中的ThreadLocal变量。变量其实是一个ThreadLocalMap。最后,查看ThreadLocalMap是否为空,如果为空,则创建一个新的空Map,如果key不为空,则以ThreadLocal为key,存储这个数据

private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

一般来说,ThreadLocal Map使用数组来存储数据,类似于HashMap。 每个ThreadLocal在初始化时都会分配一个threadLocal HashCode,然后按照数组的长度执行模块化操作,因此会发生哈希冲突。 在HashMap中,使用数组+链表来处理冲突,而在ThreadLocal Map中,也是一样的。 Next索引用于执行遍历操作,这显然具有较差的性能。 让我们再次看一下get方法。

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

同样,首先获取当前线程,然后获取当前线程中的ThreadLocal映射,然后以当前ThreadLocal作为键来获取ThreadLocal映射中的值:

        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }
        
         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

在相同的设置模式下,数组下标通过模块化获取来获取,否则,如果没有冲突,将遍历数据,因此可以通过分析大致了解以下问题:

  • ThreadLocal Map是存储在Thread下的,ThreadLocal是键,因此多个线程在同一个ThreadLocal上进行操作实际上是在每个ThreadLocal Map线程中插入的一条记录,没有冲突问题;
  • ThreadLocalMap在解决冲突时会通过遍历极大地影响性能。
  • FastThreadLocal通过其他方式解决冲突以优化性能
    让我们继续看看FastThreadLocal如何实现性能优化

译者说:为什么set的时候不适用fastPath(),因为往往大家使用完ThreadLocal都会remove,这个时候,经常是createEntry,而非updateEntry

为什么Netty的FastThreadLocal这么快

Netty分别提供了两类FastThreadLocal和FastThreadLocalThread。 FastThreadLocalThread继承自Thread。 以下也是常用的set和get方法的源代码分析:

   public final void set(V value) {
        if (value != InternalThreadLocalMap.UNSET) {
            set(InternalThreadLocalMap.get(), value);
        } else {
            remove();
        }
    }

    public final void set(InternalThreadLocalMap threadLocalMap, V value) {
        if (value != InternalThreadLocalMap.UNSET) {
            if (threadLocalMap.setIndexedVariable(index, value)) {
                addToVariablesToRemove(threadLocalMap, this);
            }
        } else {
            remove(threadLocalMap);
        }
    }

首先,将值确定为Internal ThreadLocalMap。 UNSET,然后内部ThreadLocalMap也用于存储数据:

    public static InternalThreadLocalMap get() {
        Thread thread = Thread.currentThread();
        if (thread instanceof FastThreadLocalThread) {
            return fastGet((FastThreadLocalThread) thread);
        } else {
            return slowGet();
        }
    }

    private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {
        InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();
        if (threadLocalMap == null) {
            thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());
        }
        return threadLocalMap;
    }

可以发现内部ThreadLocal映射也存储在FastThreadLocalThread中。 不同之处在于,它直接使用FastThreadLocal的index属性,而不是使用ThreadLocal的相应哈希值对位置进行建模。 实例化时初始化索引:

    private final int index;

    public FastThreadLocal() {
        index = InternalThreadLocalMap.nextVariableIndex();
    }

Then enter the nextVariableIndex method:

    static final AtomicInteger nextIndex = new AtomicInteger();
     
    public static int nextVariableIndex() {
        int index = nextIndex.getAndIncrement();
        if (index < 0) {
            nextIndex.decrementAndGet();
            throw new IllegalStateException("too many thread-local indexed variables");
        }
        return index;
    }

内部ThreadLocal映射中有一个静态nextIndex对象,用于生成数组下标,因为它是静态的,所以每个FastThreadLocal生成的索引都是连续的。 让我们看看如何在内部ThreadLocal映射中设置索引变量:

    public boolean setIndexedVariable(int index, Object value) {
        Object[] lookup = indexedVariables;
        if (index < lookup.length) {
            Object oldValue = lookup[index];
            lookup[index] = value;
            return oldValue == UNSET;
        } else {
            expandIndexedVariableTableAndSet(index, value);
            return true;
        }
    }

索引变量是存储值s的对象数组; 直接使用index作为数组下标进行存储; 如果index大于数组的长度,则将其展开; get方法通过FastThreadLocal中的索引快速读取:

   public final V get(InternalThreadLocalMap threadLocalMap) {
        Object v = threadLocalMap.indexedVariable(index);
        if (v != InternalThreadLocalMap.UNSET) {
            return (V) v;
        }

        return initialize(threadLocalMap);
    }
    
    public Object indexedVariable(int index) {
        Object[] lookup = indexedVariables;
        return index < lookup.length? lookup[index] : UNSET;
    }

通过下标直接阅读非常快,这是牺牲空间换来的速度

总结

通过以上分析,我们可以知道,当有很多ThreadLocal读写操作时,我们可能会遇到性能问题; 另外,FastThreadLocal实现了O(1)通过空间读取数据的时间; 还有一个问题,为什么不直接使用HashMap(数组+黑红树林)代替ThreadLocalMap。

原文地址

https://programmer.ink/think/why-netty-s-fastthreadlocal-is-fast.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343