TensorFlow Introduction_中英文对照

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

Introduction

Let's get you up and running with TensorFlow!

让我们开始学习并运行TensorFlow!

But before we even get started, let's peek at what TensorFlow code looks like in the Python API, so you have a sense of where we're headed.

但在我们开始之前,让我们先看一眼在Python API中TensorFlow代码什么样,对我们要学习的东西有点感觉。

Here's a little Python program that makes up some data in two dimensions, and then fits a line to it.

下面是一个Python小程序,它在二维空间构造了一些数据,并用一条直线来拟合这些数据。

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will 'run' this first.
init = tf.initialize_all_variables()

# Launch the graph.
sess = tf.Session()
sess.run(init)

# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]

The first part of this code builds the data flow graph. TensorFlow does not actually run any computation until the session is created and the run function is called.

代码的第一部分构建数据流图。在session创建和run函数调用之后,TensorFlow才开始真正的进行计算。

To whet your appetite further, we suggest you check out what a classical machine learning problem looks like in TensorFlow. In the land of neural networks the most "classic" classical problem is the MNIST handwritten digit classification. We offer two introductions here, one for machine learning newbies, and one for pros. If you've already trained dozens of MNIST models in other software packages, please take the red pill. If you've never even heard of MNIST, definitely take the blue pill. If you're somewhere in between, we suggest skimming blue, then red.

为了进一步提高你的兴趣,我们建议你查看一下在TensorFlow中经典的机器学习问题是什么样子。在神经网络领域,最经典的问题是MNIST手写字符识别问题。这儿我们有两个介绍,一个是为初学者准备的,一个是为专业人士准备的。如果你已经用其它的软件包训练了许多MNIST模型,请点红色的药丸。如果你从未听过MNIST,请点蓝色药丸。如果你介于两者之间,我们建议你先略读蓝色部分,再看红色部分。


image

图像许可CC BY-SA 4.0; 原作者W. Carter

If you're already sure you want to learn and install TensorFlow you can skip these and charge ahead. Don't worry, you'll still get to see MNIST -- we'll also use MNIST as an example in our technical tutorial where we elaborate on TensorFlow features.

如果你已经确定你想学习并安装TensorFlow,你可以跳过这些直接看接下来的东西。不用担心,你仍会看到MNIST——我们也将使用MNIST作为技术教程中的一个例子来阐述TensorFlow的特性。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,363评论 0 23
  • 希望世上的流浪动物都能获得幸福...... 相信一定是Bobby当初感谢的动作感动了Muniowski吧!
    哈哈哈哈水洗面膜和阅读 116评论 0 0
  • “弟弟,你再等等,我这就出去买药。” “可是,现在出去……” “没事的。” 我知道,现在出去很不安全。我们这个星球...
    职场解忧铺何掌柜阅读 6,514评论 2 3
  • 这次的作品本身有一定的难度,绘画所需要的时间有点长,而细节的处理又需要细致。一开始觉得是对自己的挑战,克服畏难情绪...
    烟雨程程阅读 183评论 2 2
  • 这个月的雨水特别多,就连那满城的桂花,都被沉沉的雨打落了一地,待太阳出来的时候,躺在地上的它们是否清香依然?
    游离的吉普赛人阅读 145评论 0 0