2021-09-13 | 近期文献阅读笔记

End-to-End Neural Pipeline for Goal-Oriented Dialogue Systems using GPT-2

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, Kee-Eung Kim. KAIST. ACL2020

Code can be found here

HighLight

  • It is trained to follow the traditional dialogue management pipeline, making the monolithic neural model more interpretable and easily integratable with external systems
  • It is trained in an end-to-end fashion with simple gradient descent
  • Leverages GPT-2, a powerful pre-trained language model

Introduction

Traditional goal-oriented dialogue system mostly adopts a pipelined modular architecture:

  • Natural Language Understanding (NLU) module that first recognizes and comprehends user’s intent and extracts values for slots
    • Input: user's utterance X_n
    • Output: U_n=(I_n, Z_n), where I_n refers to Intention, Z_n refers to slot-value pairs
  • Dialogue State Tracking (DST) module that tracks the values of slots
    • Input: U_n, A_{n-1}, S_{n-1} (N-best list)
    • Output: S_{n}
  • Dialogue policy (POL) module that decides the system action
    • Input: S_{n}
    • Output: A_{n}
  • Natural language generation (NLG) module that generates the utterance that corresponds to the system action
    • Input: A_{n}
    • Output: Y_{n}

End-to-end methods build a dialog system using a single model, where natural language context is taken as input and natural language response is generated as an output

Dataset

MultiWOZ dataset
Evaluated by ConvLab

An example of a single-domain dialogue in the MultiWOZ dataset

Each dialogue consists of ‘Goal’, ‘Database’ and ‘Dialogue turns’.

  • Goal is defined by the domain and the slots. The slots are divided into informable, requestable and book slots.
    • Informable slots represent user constraints
    • Requestable slots hold additional information that the user wants to obtain
    • Book slots are used to reserve a place recommended by the system

End-to-end neural dialogue model

An overall architecture with a concrete example
  1. Predict the recent domain and the corresponding dialogue state conditioned on the dialogue history
  2. Predict the system action with delexicalized tokens conditioned on the dialogue history and dialogue state
  3. If the system action (e.g. ‘inform’, ‘book’) needs external information from the database, the query module2 retrieves the candidates and returns one of them
  4. Update the current system action when detecting Empty Query Results
  5. Generate the system response with delexicalized tokens conditioned on dialogue history, dialogue state, and system action
  6. Update the delexicalized tokens in the system response with the query result

Input

In the MultiWOZ dataset, the ‘metadata’ is treated as the dialogue state and the ‘dialogue act’ is treated as the system action

Delimiter tokens :

  • <usr>
  • <sys>
  • <ds>
  • <sa>

Special tokens :

  • domain and slot names
  • <nm> and <dc>

Input embedding = Token embedding + Speaker embedding + Positional embedding

Training Objective

The objective function is the weighted sum of the objectives of language modeling (LM) and next-utterance classification (NC) :

L_{\text {total }}(W)=\alpha_{L M} L_{L M}(W)+\alpha_{N C} L_{N C}(W)

  • For LM, L_{L M}\left(w_{1}, \ldots, w_{n}\right)=\sum_{i} \log P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
  • For NC, the model needs to distinguish the gold response (gold dialogue state+gold system action+gold system response) from a distractor (gold dialogue state+gold system action+fake system response), given the dialogue history

Result

On DSTC8:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343