ESTIMATE算法免疫浸润评分

介绍

恶性实体瘤组织不仅包括肿瘤细胞,还包括与肿瘤相关的正常上皮和基质细胞,免疫细胞和血管细胞。基质细胞被认为在肿瘤生长、疾病进展和耐药性中起重要作用。

浸润性免疫细胞的作用与环境有关,虽然浸润性T淋巴细胞的抗肿瘤作用在卵巢癌中已被观察到,但在结直肠癌中,肿瘤的生长、侵袭和转移与肿瘤的生长、侵袭和转移有关.
对肿瘤组织中与肿瘤相关的正常细胞的全面了解可能为肿瘤生物学的研究提供重要的见解,并有助于开发可靠的预后和预测模型。

作者提出了一种新的算法,利用癌症样本转录谱的独特性质来推断肿瘤细胞的内容以及不同的浸润正常细胞,称为Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data(ESTIMATE)。

作者重点研究基质细胞和免疫细胞,它们构成了肿瘤样本中主要的非肿瘤成分,并识别与肿瘤组织中基质细胞和免疫细胞浸润相关的特异性信号。通过进行单样本基因集富集分析(ssGSEA),作者通过计算基质和免疫评分来预测浸润基质和免疫细胞的水平,这些构成了在肿瘤组织中推断肿瘤纯度的 ESTIMATE score的基础。

ESTIMATE算法的概述如下图所示

01.png

作者从不同平台的数据一筛选出两个 signature,一个是Stromal signature,Immune signature。两个标签分别有141个基因。通过ssGSEA分别计算基质得分和免疫得分。然后联合这两个得分来预测肿瘤纯度。

ESTIMATE适用平台有"affymetrix", "agilent", "illumina",为了能让RNAseq数据能够适用ESTIMATE,使用VOOM法对RNAseq数据进行处理。此处用原始的sample文件进行输入

ESTIMATE代码

#安装包
if (F) {
  library(utils)
  rforge <- "http://r-forge.r-project.org"
  install.packages("estimate", repos=rforge, dependencies=TRUE)
}
library(estimate)
help(package="estimate")

输入数据进行分析

rm(list = ls())
library(estimate)
in.file <- 'sample_input.txt'       #输入文件
outfile2E <- 'ESTIMATE_input.gct'        #生成ESTIMATE 的输入文件
outputGCT(in.file, outfile2E)            #该函数以GCT格式写入输入文件

filterCommonGenes(input.f= in.file, output.f= outfile2E, id="GeneSymbol")
# 该功能将每个平台的不同数量的基因与10412个普通基因相结合。
### code chunk number 2: estimate
#这个功能计算基质,免疫,并估计得分每个样本使用基因表达数据。
estimateScore("ESTIMATE_input.gct", "ESTIMATE_score.gct")
plotPurity(scores="ESTIMATE_score.gct", samples="s516")
#根据ESTIMATE score绘制肿瘤纯度。
s516.png
#将评分保存为txt格式
ESTIMATE_score <- read.table("ESTIMATE_score.gct", skip = 2,#前两行跳过
                             header = TRUE,row.names = 1)
ESTIMATE_score <- ESTIMATE_score[,2:ncol(ESTIMATE_score)]
ESTIMATE_score

write.table(ESTIMATE_score,file = "ESTIMATE_score.txt",quote = F,sep = "\t")

参考来源

Yoshihara, K., Shahmoradgoli, M., Martínez, E. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4, 2612 (2013).https://doi.org/10.1038/ncomms3612

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容