即时编译(JIT)

通常情况下,Java程序最初都是被编译为字节码,通过解释器进行解释执行,解释执行能够获得更好的启动时间。某些被频繁执行的方法或者代码块,会被JVM认定为“热点代码”。在运行时JVM会把这些热点代码编译成与本地平台相关的机器码,并且进行各种层次的优化,以提高执行效率。完成这个任务的编译器称为即时编译器(JIT编译器)。

HotSpot的分层编译模式

HotSpot内置了C1编译器C2编译器。默认情况下,JVM采取解释器和其中一个编译器直接配合的运行模式,编译器的选择,根据自身的版本以及宿主机器的硬件性能自动选择。此外,用户也可以通过JVM参数强制JVM的运行模式。如下表:

参数 运行模式 说明
-Xint 解释模式 编译器不介入工作,所有代码都使用解释器解释执行
-Xcomp 编译模式 优先采用编译方式执行,但是在编译无法进行的情况下,还是会进行解释执行
-client 混合模式(Client模式) 解释器搭配C1的混合模式,适用于对于执行时间较短的,或者对启动性能有要求的程序
-server 混合模式(Server模式) 解释器搭配C2的混合模式,适用于执行时间较长的,或者对峰值性能有要求的程序

分层编译

Java 7 引入了分层编译(对应参数 -XX:+TieredCompilation)的概念,综合了 C1 的启动性能优势和 C2 的峰值性能优势。
分层编译将 Java 虚拟机的执行状态分为了五个层次。为了方便阐述,我用“C1 代码”来指代由 C1 生成的机器码,“C2 代码”来指代由 C2 生成的机器码。五个层级分别是:

  1. 解释执行;
  2. 执行不带 profiling 的 C1 代码;;
  3. 执行仅带方法调用次数以及循环回边执行次数 profiling 的 C1 代码;
  4. 执行带所有 profiling 的 C1 代码;
  5. 执行 C2 代码;
    其中 1 层的性能比 2 层的稍微高一些,而 2 层的性能又比 3 层高出 30%。这是因为 profiling 越多,其额外的性能开销越大。
    不同层次的编译路径如下:


    编译路径图.png

    在 5 个层次的执行状态中,1 层和 4 层为终止状态。当一个方法被终止状态编译过后,如果编译后的代码并没有失效,那么 Java 虚拟机是不会再次发出该方法的编译请求的。

编译对象和触发条件

Java 虚拟机是根据方法的调用次数以及循环回边的执行次数来触发即时编译的。前面提到,Java 虚拟机在 0 层、2 层和 3 层执行状态时进行 profiling,其中就包含方法的调用次数和循环回边的执行次数。

去优化

当激进优化(C2的可能编译优化)的假设不成立,如加载了新类后类型继承结构发生了变化、出现了“罕见陷阱”时可以通过逆优化退回到解释执行的模式。

编译优化技术

HotSpot的官方的编译优化技术列表见这里。下面列举一些最有代表性的优化技术是如何运用的。

公共子表达式消除

数组边界检查消除

例如在循环体内访问数组,如果能够通过数据流分析就可以判断循环变量的取值范围永远在[0,array.length],那在循环体中就可以消除数组的上下界检查。

方法内联

逃逸分析

逃逸分析的基本行为就是分析对象的动态作用域。当一个对象在方法中被定义后,它可能被外部方法所引用(例如作为形参传递到其它方法中去),称为方法逃逸。如果是被外部线程访问到,称为线程逃逸。如果能够证明一个对象不会逃逸到方法或者线程之外,则可能对这个对象进行一些高效的优化:

  • 栈上分配
    如果能够确定一个对象不会逃逸到方法之外,可以在栈上分配对象的内存,这样对象占用的内存* 空间可以随着栈帧出栈而销毁,减少gc的压力;
  • 同步消除
    如果逃逸分析得出对象不会逃逸到线程之外,那么对象的同步措施可以消除。
  • 标量替换
    如果逃逸分析证明一个对象不会被外部访问,并且这个对象可以被拆解,那么程序执行的时候可能不创建这个对象,改为在栈上分配这个方法所用到的对象的成员变量。

JIT相关的JVM参数

  • -XX:CompileThreshold,方法调用计数器触发JIT编译的阀值
  • -XX:BackEdgeThreshold,回边计数器触发OSR编译的阀值
  • -XX:-BackgroundCompilation,禁止JIT后台编译

参考

深入拆解Java虚拟机-即时编译,郑雨迪
深入理解Java虚拟机-晚期(运行期)优化,周志明

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容