Python 自然语言处理 入门—关于jieba库的使用

1. 什么是jiaba库

jieba 是一个python实现的分词库,对中文有着很强大的分词能力。
git链接:https://github.com/fxsjy/jieba

2. jieba库的优点

1 支持三种分词模式:
a. 精确模式,试图将句子最精确地切开,适合文本分析;
b. 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
c. 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

2 支持自定义词典

3. 关于jiaba库的基本功能

demo1:分词

#coding:utf-8
import jieba

words=jieba.cut("他来到了网易杭研大厦")
print "/".join(words)
2017-03-06 15-01-20屏幕截图.png

demo2 : 加入自定义字典

#coding:utf-8
import jieba

jieba.load_userdict("dict.txt")
words=jieba.cut("他来到了网易杭研大厦")
print "/".join(words)
print type(words)

<br />
自定义的词典 dict.txt

杭研大厦 100 n

自定义的词典一行上面有三列,第二个是指出现的次数,第三个是词性

运行结果:


2017-03-06 15-13-44屏幕截图.png

也就是说杭研大厦被看作为了一个整体。

demo3:允许程序在运行的时候,动态的修改词典

#coding:utf-8
import jieba
words =jieba.cut("我们中出了一个叛徒",HMM=False)
#jieba.suggest_freq(('中出'),True)
print '/'.join(words)
2017-03-06 17-54-31屏幕截图.png

使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其(或不能)被分出来。
注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

#coding:utf-8
import jieba
words =jieba.cut("我们中出了一个叛徒",HMM=False)
jieba.suggest_freq(('中出'),True)
#jieba.suggest_freq(('中','出'),True)
print '/'.join(words)
2017-03-06 17-56-35屏幕截图.png

demo4: 关键词提取

demo5:词性标注

#coding:utf-8
import jieba.posseg as pseg 

words=pseg.cut("我爱北京天安门")
for word ,flag in words:
    print ('%s %s' %(word,flag))
2017-03-06 18-07-03屏幕截图.png

demo5:三种模式的分词

# encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))

运行结果:


2017-03-06 18-10-06屏幕截图.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容

  • 1.安装及入门介绍 推荐直接 pip install jieba 结巴中文分词涉及到的算法包括: (1)基于Tri...
    MiracleJQ阅读 13,233评论 0 5
  • 关键词:windows平台下jieba安装、三种模式比较、自定义词典、停用词语料、词频统计、词云生成 jieba简...
    秋灯锁忆阅读 4,398评论 0 2
  • 注:参考文档 一、在线词云图工具# (1)、使用### 在正式使用jieba分词之前,首先尝试用在线分词工具来将自...
    DearIreneLi阅读 6,002评论 1 8
  • 常用概念: 自然语言处理(NLP) 数据挖掘 推荐算法 用户画像 知识图谱 信息检索 文本分类 常用技术: 词级别...
    御风之星阅读 9,148评论 1 25
  • ProcessOn简介 ProcessOn是一个在线作图工具的聚合平台,它可以在线画流程图、思维导图、UI原型图、...
    thychan阅读 933评论 1 3