JoJoGAN 实践

JoJoGAN: One Shot Face Stylization. 只用一张人脸图片,就能学习其风格,然后迁移到其他图片。训练时长只用 1~2 min 即可。

效果:

image

主流程:

image

本文分享了个人在本地环境(非 colab)实践 JoJoGAN 的整个过程。你也可以依照本文上手训练自己喜欢的风格。

准备环境

安装:

conda create -n torch python=3.9 -y
conda activate torch

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y

检查:

$ python - <<EOF
import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
EOF
1.10.1 True

准备代码

git clone https://github.com/mchong6/JoJoGAN.git
cd JoJoGAN

pip install tqdm gdown matplotlib scipy opencv-python dlib lpips wandb

# Ninja is required to load C++ extensions
wget https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip
sudo unzip ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force

然后,将本文提供的几个 *.py 放进 JoJoGAN 目录,从这里获取: https://github.com/ikuokuo/start-deep-learning/tree/master/practice/JoJoGAN

  • download_models.py: 获取模型
  • generate_faces.py: 生成人脸
  • stylize.py: 风格化
  • train.py: 训练

之后,于训练流程一节,会结合代码,讲述下 JoJoGAN 的工作流程。其他些 *.py 只提下用法,实现就不多说了。

获取模型

python download_models.py 获取模型,如下:

models/
├── arcane_caitlyn_preserve_color.pt
├── arcane_caitlyn.pt
├── arcane_jinx_preserve_color.pt
├── arcane_jinx.pt
├── arcane_multi_preserve_color.pt
├── arcane_multi.pt
├── art.pt
├── disney_preserve_color.pt
├── disney.pt
├── dlibshape_predictor_68_face_landmarks.dat
├── e4e_ffhq_encode.pt
├── jojo_preserve_color.pt
├── jojo.pt
├── jojo_yasuho_preserve_color.pt
├── jojo_yasuho.pt
├── restyle_psp_ffhq_encode.pt
├── stylegan2-ffhq-config-f.pt
├── supergirl_preserve_color.pt
└── supergirl.pt

生成人脸

用 StyleGAN2 预训练模型随机生成人脸,用于测试:

python generate_faces.py -n 5 -s 2000 -o input

使用预训练风格

JoJoGAN 给了 8 个预训练模型,可以一并体验,与文首的效果图一样:

# 预览 JoJoGAN 所有预训练模型 风格化某图片(test_input/iu.jpeg)的效果
python stylize.py -i test_input/iu.jpeg -s all --save-all --show-all

# 使用 JoJoGAN 所有预训练模型 风格化所有生成的测试人脸(input/*)
find ./input -type f -print0 | xargs -0 -i python stylize.py -i {} -s all --save-all

训练自己的风格

首先,准备一张风格图:

image

之后,开始训练:

python train.py -n yinshi -i style_images/yinshi.jpeg --alpha 1.0 --num_iter 500 --latent_dim 512 --use_wandb --log_interval 50

--use_wandb 时,可查看训练日志:

image

最后,测试效果:

python stylize.py -i input/girl.jpeg --save-all --show-all --test_style yinshi --test_ckpt output/yinshi.pt --test_ref output/yinshi/style_images_aligned/yinshi.png
image

训练工作流程

准备风格图片,转为训练数据

将风格图片里的人脸裁减对齐:

# dlib 预测人脸特征点,再裁减对齐
from util import align_face
style_aligned = align_face(img_path)

将风格图片 GAN Inversion 逆映射回预训练模型的隐向量空间(Latent Space):

name, _ = os.path.splitext(os.path.basename(img_path))
style_code_path = os.path.join(latent_dir, f'{name}.pt')

# e4e FFHQ encoder (pSp) > GAN inversion,得到 latent
from e4e_projection import projection
latent = projection(style_aligned, style_code_path, device)

载入 StyleGAN2 模型,训练微调

载入预训练模型:

latent_dim = 512

# 加载预训练模型
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load("models/stylegan2-ffhq-config-f.pt", map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)

# 准备微调的模型
generator = deepcopy(original_generator)

训练可调参数:

# 控制风格强度 [0, 1]
alpha = 1.0
alpha = 1-alpha

# 是否保留原图像色彩
preserve_color = True

# 训练迭代次数(最好 500,Adam 学习率是基于 500 次迭代调优的)
num_iter = 500

# 风格图片 targets 及 latents
targets = ..
latents = ..

进行训练,拟合隐空间。最后保存:

# 准备 LPIPS 计算 loss
lpips_fn = lpips.LPIPS(net='vgg').to(device)

# 准备优化器
g_optim = torch.optim.Adam(generator.parameters(), lr=2e-3, betas=(0, 0.99))

# 哪些层用于交换,用于生成风格化图片
if preserve_color:
    id_swap = [7,9,11,15,16,17]
else:
    id_swap = list(range(7, generator.n_latent))

# 训练迭代
for idx in tqdm(range(num_iter)):
    # 交换层混合风格,并加噪声
    mean_w = generator.get_latent(torch.randn([latents.size(0), latent_dim])
        .to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
    in_latent = latents.clone()
    in_latent[:, id_swap] = alpha*latents[:, id_swap] + (1-alpha)*mean_w[:, id_swap]

    # 以 latent 风格化图片,与目标风格对比
    img = generator(in_latent, input_is_latent=True)
    loss = lpips_fn(F.interpolate(img, size=(256,256), mode='area'),
        F.interpolate(targets, size=(256,256), mode='area')).mean()

    # 优化
    g_optim.zero_grad()
    loss.backward()
    g_optim.step()

# 保存权重,完成
torch.save({"g": generator.state_dict()}, save_path)

结语

JoJoGAN 实践下来效果不错。使用本文给到的代码,更容易上手训练自己喜欢的风格,值得试试。


GoCoding 个人实践的经验分享,可关注公众号!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容