机器学习|最小二乘法的概率解释

在拟合数据时,为什么选择最小二乘来作为误差函数呢?

虽然不明白为什么,但是一直觉得很有道理的样子。最小二乘或平方差作为误差函数,是基于一些概率假设推导出了这个公式。这里有一些概率上的解释。让我们慢慢来看。

1.允许误差存在

首先要说明的,所有的预测值都不可能完美地与真实值契合,所以误差必然存在,而我们的目的就是如何让误差尽可能地小。这样就可以假设有一组θ,使真实的数据存在以下关系式,y(i)表示真实值,θTx(i)表示预测值,ε表示误差项:

2.假设误差是高斯分布

ε作为误差项,它捕捉了一些没有被设置为特征的变量,以房价为例,它可以代表房东的心情对售价的影响,或者代表此地区雾霾严重程度对房价的影响,或者随机误差。再假设ε是IID分布,即独立、同等分布,也就是高斯分布(或正态分布):

其中μ是正态分布随机变量的均值,σ2是此随机变量的方差,也可以记作N(μ,σ2)。

设ε的平均值为0,方差为ε2,ε的高斯分布,也就是ε的概率密度函数表示如下:

3.求真实值的概率分布

而ε的概率密度函数,就是预测值与真实值差的概率密度函数,那么可以把上述两个等式合并,经过变换,得到如下等式:

根据正态分布公式,这个式子还可以这样理解,真实值y(i)是一个随机变量,θTx(i)是随机变量的平均值,p为变量y的概率密度函数。那么真实值y(i)的概率分布可以写作:

4.求联合概率分布

这样相当于给定一组θ、x,求出了y的概率密度分布。将此公式推广,用向量y和向量X代表所有的数据,就能够求出所有数据的联合概率分布:

把这个函数定义为似然函数。联合概率分布等于边缘概率分布的乘积,π代表累乘。

5.定义对数似然函数

这里我们就得到了一个关于x、y、θ的模型,它表示真实值y的联合概率分布。当我们想使预测正确的概率最大时,只需要将L(θ)最大化就可以了。于是,求值问题又变成了求最大值问题。为了方便计算,我们定义对数似然函数,l(θ),也就是对L(θ)取对数,再求最大值。对数函数为一个单调递增函数,所以不会对原函数造成影响。取对数后,累乘变成累和:

左侧是一个常数项,右边是一个负数项。要让l(θ)最大,就要让负数项最小:

是不是很熟悉?这就是回归中的风险函数J(θ)的由来,也就是最小二乘法。最小二乘法是一种概率上的解释,它的目标是寻找一个θ值,使准确预测的概率最大化。因此,基于这些概率的假设,最小二乘法是回归问题中重要的估算方法。

如果你又问我,为什么误差项是高斯分布,那就等我想好怎么介绍中心极限定理吧。

本文参考:吴恩达CS 229 Machine Learning

http://cs229.stanford.edu/materials.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容