给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum
本人代码:
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer,Integer> map = new HashMap<>();
int[] index = new int[2];
for(int i=0;i<nums.length;i++){
map.put(nums[i], i);
}
for(int i=0;i<nums.length;i++){
if(map.containsKey(target-nums[i])){
index[0] = i;
index[1] = map.get(target-nums[i]);
if(index[0]!=index[1]){
break;
}
}
}
return index;
}
}
官方代码
两遍哈希表
为了对运行时间复杂度进行优化,我们需要一种更有效的方法来检查数组中是否存在目标元素。如果存在,我们需要找出它的索引。保持数组中的每个元素与其索引相互对应的最好方法是什么?哈希表。
通过以空间换取速度的方式,我们可以将查找时间从 O(n)O(n)O(n) 降低到 O(1)O(1)O(1)。哈希表正是为此目的而构建的,它支持以 近似 恒定的时间进行快速查找。我用“近似”来描述,是因为一旦出现冲突,查找用时可能会退化到 O(n)O(n)O(n)。但只要你仔细地挑选哈希函数,在哈希表中进行查找的用时应当被摊销为 O(1)O(1)O(1)。
一个简单的实现使用了两次迭代。在第一次迭代中,我们将每个元素的值和它的索引添加到表中。然后,在第二次迭代中,我们将检查每个元素所对应的目标元素(target−nums[i]target - nums[i]target−nums[i])是否存在于表中。注意,该目标元素不能是 nums[i]nums[i]nums[i] 本身!
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
map.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement) && map.get(complement) != i) {
return new int[] { i, map.get(complement) };
}
}
throw new IllegalArgumentException("No two sum solution");
}
复杂度分析:
- 时间复杂度:O(n)O(n)O(n), 我们把包含有 nnn 个元素的列表遍历两次。由于哈希表将查找时间缩短到 O(1)O(1)O(1) ,所以时间复杂度为 O(n)O(n)O(n)。
- 空间复杂度:O(n)O(n)O(n), 所需的额外空间取决于哈希表中存储的元素数量,该表中存储了 nnn 个元素。