想读懂用户,至少得先学会数据分析吧

原文由Demo8攥稿,载于快鲤鱼

“大数据”这个名词你可能已经听得快麻木了,但在这个由0101单个Bit构建起来的互联网世界中,数据即力量,数据即财富,数据即风潮。然而,如何将“大数据”的概念在移动互联网时代玩儿出新花样?如何让中小型的创业团队也拥有操控“大数据”的能力?这个问题,业界一直未能有成熟的样例。

无论你是产品经理、运营、渠道还是研发、甚至站长,你可能每天都面对着无数的报表、统计图、转化率,可能留存率不离嘴、PV、UV、流量、渠道如数家珍。但是,光有这些数字就够了吗?

移动互联的下一个突破口:精细化运营

随着各类App的丰富和智能设备的普及,移动互联网的市场已经日渐拥挤,单纯的运营数字,已很难帮助创业者杀出重围。可以说,提升对用户画像、行为习惯、个性标签等信息的重视,以更细致的、多维度的数据分析结果驱动运营,已经势在必行。而诸葛iO,正是基于这样的理念诞生的一款精细化运营分析工具。

诸葛iO的缔造者们坚信“所有伟大产品的诞生,都依托于用户的追随与期待”。纵观整个产品,这款分析工具也的确做到了这点——数据,以用户为本。

查看诸葛iO的演示DEMO,你会发现除了活跃用户数、留存率、访问次数等等常规的运营数据外,“用户档案”“用户分组”这两个模块也被放在了第一层级上。而其中用户档案所展示的数据精细度,令人咋舌。

所有的用户的访问时长、历史30天访问频次、事件触发表现、设备机型、登录地区、什么时间进行了什么操作……等等一系列详细的数据信息一览无余。足可见诸葛iO对用户行为数据的关注程度之深。

“用户档案”的模块中,最引人瞩目的,当属“诸葛标签”功能。之所以敢以“诸葛”命名,是因为这里的每个用户标签是根据诸葛iO自有的算法体系,基于对用户的设备、帐号信息与过去的行为习惯数据,所得出的画像标签。

在诸葛的标签体系里,你或许是个购物狂,但同时也是个数码达人。通过多层的属性叠加,每一个App的运营者,都可以在诸葛精准地定位每一个用户,深入洞察其行为表现。

此外,诸葛iO还提供了通知推送的通道,针对已分组的各个用户群体,去实现通知的定向投送、广告的精准投放等等功能。诸葛IO表示,他们曾与一家O2O企业做过测试,根据用户画像做的精准推送,其CPA要比大规模推送高出5倍

在关注用户行为的同时,诸葛IO还引入了在电商行业经常被提及的“漏斗转化”功能。开发者可以预设一个用户使用场景,并为其建立检测漏斗,其后,便可每天通过诸葛的后台监测该场景各步骤的转化率了。

借助“漏斗转化”功能,PM们就可以通过数据来判断场景设计与交互体验是否是合理、流畅的。拿电商导购应用举例,它的用户典型使用流程是:打开客户端—>浏览最热最新推荐—>点击查看单品—>前往淘宝下单—>评价分享。

如果在这个漏斗中我们发现,“点击查看单品”到“前往淘宝下单”的转化率远低于预期,那么就可以尝试将“去购买”按钮改为“查看详情”, 暗示用户点击之后有更多有利于购买决策的信息,并且将按钮改成红色,刺激决策。经过这两个简单的修改后,该步骤的转化率可获得高达5%的提升。

产品背后人和事儿

能够搭建起诸葛iO这款强大的App数据分析平台,得益于其浓厚的技术和数据的积累。诸葛iO隶属于37degree(北京乐享天下科技有限公司),是一家专业的数据分析公司。他们在过去3年,致力于准确、深入的数据分析和建模;灵活、高效的数据应用和反馈。

公司目前拥有大量用户行为数据库、自有语义分析引擎、用户画像引擎、跨屏用户匹配算法等技术,曾服务过平安银行、宝洁、奥美、联想、中国电信、中央电视台、海尔集团、聚美优品等知名客户。

在和诸葛iO团队的沟通中,他们表示,产品运营的发展方向一定是精细化运营。就像面对一张150分的考卷,仅仅知道自己的分数是没有意义的,只有清楚地知道分丢在了哪里、如何钻研进修,才能帮助考生摘得桂冠。数据分析也是同理,光看所谓的KPI,很容易陷进数据的怪圈,盲目追求“量”,每天看着各种报表统计图感觉形势都是一片大好,然而却忽视数据背后一个一个的“人”。

不论我们打造一款怎样的产品,都应该意识到,每一个用户都有他们的个性和独特的行为习惯。诸葛iO告诉DEMO8,在国外用户细分与行为分析的概念已经相当普及,像Mixpanel这样的精细化运营分析平台已获得9亿美金的估值,而在国内,这一理念只是刚刚起步。

此外,诸葛iO还向DEMO8介绍说,自己是一家技术驱动型的公司。团队成员多来自知名院校和企业,有浓厚的技术积累,在产品的研发迭代上也是技术先于营销。比如诸葛iO的SDK尽可能实现轻体量,确保嵌入代码后不影响App的运行效率。此外,诸葛IO还提供了服务器端SDK,通过服务器端所获取的数据进行报表分析,让前端的代码进一步轻量化。

得益于标签,算法等杀手级功能,虽然上线还不足两个月,诸葛IO就已经累计了逾500万的设备覆盖量,而且积累了一批“忠实粉”,例如:暴走漫画和Fuubo。

案例与愿景

谈及与暴漫的合作,诸葛iO的工作人员表示,这次项目的促成,与其说是基于过去合作的信任,不如说是因为暴走漫画所重视的用户标签、首页推荐、分类访问曲线监测的功能,恰好是诸葛IO的强项。

还有就是和Fuubo的合作。熟悉Fuubo的朋友们应该都知道,它是由碎星和他的几个小伙伴们业余时间完成的新浪微博第三方客户端,这样小的一个团队没有足够的精力和经费去做大规模的推广,于是他们启用了诸葛IO来为团队提供渠道的数据分析。这让渠道的选择和推广变得简单,从而为团队节省大量的人力和宣传成本。

在谈到未来的发展时,诸葛iO告诉DEMO8,他们会专注于做最好的运营分析工具,以用户行为分析和预测算法位核心,绝不“摊大饼”。涉及到推送等其它功能,诸葛IO将与该领域的友商合作,以求为开发者提供更专业的集成服务。而在谈到与同类产品的竞争时,他们说:“市场就是一张饼,我们不一定要去和别人分切这一张饼,而是可以在上面加一些东西,把它做成馅饼、做成披萨,去满足更多元化的口味。”

如果说,产品设计和研发是从0到1,运营就是从1到1000。在场景为王的移动互联时代,产品的设计与运营的核心,就是站在用户角度去考虑问题。摸清用户的使用场景,了解用户真正想要什么,那么KPI的增长,就是自然而然的事了。然而如何甄别有效的场景、如何筛分高价值的用户群、从哪个环节开始提升用户满意度?这些问题,数据知道答案。而以用户分析为核心的诸葛iO,则为渴望参透这些答案的创业者们,提供了全新的选择。

直升梯:「诸葛IO

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容