数据库性能优化-定位满查询

一、通过慢查询日志获取存在性能问题的SQL

开启mysql数据库慢查询日志和not using index的查询。

set global slow_query_log=on  /*开启慢查询日志*/
set log_queries_not_using_indexes=on /*开启未用查询的日志*/
set global slow_query_log= “你想要的路径” /*该演示里使用默认路径*/

然后,执行如下命令,可以看到慢查询日志已经打开,并且可以看到慢查询日志存放的路径。

Show variables like ‘%slow%’

到这里我们已经开启了慢查询以及未走索引的查询日志记录,但是还差一步,那就是多慢的查询算慢查询?鄙人所在微服务项目开发和测试讨论的结果是超过100毫秒的查询,都得记录分析调优。所以还需要执行:

Set long_query_time=0.1 /*超过100毫秒的都是慢查询*/
二、实时获取慢查询

在性能测试执行过程中,有时会发现某一个非常慢,此刻就需要实时找出正在执行的慢查询。我们可以借助下面的命令实现:

select id, 'user','host,db,command,'time',state, info
from information_schema.processlist where time >=0.1

这里的0.1秒可以根据自己需要调整,information_schema对应数据库的processlist表

三、explain:真正的好帮手

上面主要讲了怎么找到慢查询,有了慢查询sql后,我们怎么分析呢?借助explain。

1、表的读取顺序
2、数据读取操作的操作类型
3、哪些索引可以使用
4、哪些索引被实际使用
5、表之间的引用
6、每张表有多少行被优化器查询

这里我们着重讲讲第四点执行计划,如何用explain去查看分析执行计划。:

简单使用 explain+ sql 语句来查看执行计划:
信息 描述
id 查询的序号,包含一组数字,表示查询中执行select子句或操作表的顺序
两种情况
id相同,执行顺序从上往下
id不同,id值越大,优先级越高,越先执行
iselect_type 查询类型,主要用于区别普通查询,联合查询,子查询等的复杂查询
1、simple ——简单的select查询,查询中不包含子查询或者UNION
2、primary ——查询中若包含任何复杂的子部分,最外层查询被标记
3、subquery——在select或where列表中包含了子查询
4、derived——在from列表中包含的子查询被标记为derived(衍生),MySQL会递归执行这些子查
询,把结果放到临时表中
5、union——如果第二个select出现在UNION之后,则被标记为UNION,如果union包含在from子句的
子查询中,外层select被标记为derived
6、union result:UNION 的结果
table 输出的行所引用的表
type 显示联结类型,显示查询使用了何种类型,按照从最佳到最坏类型排序
1、system:表中仅有一行(=系统表)这是const联结类型的一个特例。
2、const:表示通过索引一次就找到,const用于比较primary key或者unique索引。因为只匹配一行数据,所以如果将主键置于where列表中,mysql能将该查询转换为一个常量
3、eq_ref:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于唯一索引或者主键扫描
4、ref:非唯一性索引扫描,返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回所有匹配某个单独值的行,可能会找多个符合条件的行,属于查找和扫描的混合体
5、range:只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引,一般就是where语句中出现了between,in等范围的查询。这种范围扫描索引扫描比全表扫描要好,因为它开始于索引的某一个点,而结束另一个点,不用全表扫描
6、index:index 与all区别为index类型只遍历索引树。通常比all快,因为索引文件比数据文件小很多。
7、all:遍历全表以找到匹配的行
注意:一般保证查询至少达到range级别,最好能达到ref。
possible_keys 指出MySQL能使用哪个索引在该表中找到行
key 显示MySQL实际决定使用的键(索引)。如果没有选择索引,键是NULL。查询中如果使用覆盖索引,则该索引和查询的select字段重叠。
key_len 表示索引中使用的字节数,该列计算查询中使用的索引的长度在不损失精度的情况下,长度越短越好。如果键是NULL,则长度为NULL。该字段显示为索引字段的最大可能长度,并非实际使用长度。
ref 显示索引的哪一列被使用了,如果有可能是一个常数,哪些列或常量被用于查询索引列上的值
rows 根据表统计信息以及索引选用情况,大致估算出找到所需的记录所需要读取的行数
Extra 包含不适合在其他列中显示,但是十分重要的额外信息
1、Using filesort:说明mysql会对数据适用一个外部的索引排序。而不是按照表内的索引顺序进行读取。MySQL中无法利用索引完成排序操作称为“文件排序”
2、Using temporary:使用了临时表保存中间结果,mysql在查询结果排序时使用临时表。常见于排序order by和分组查询group by。
3、Using index:表示相应的select操作用使用覆盖索引,避免访问了表的数据行。如果同时出现using where,表名索引被用来执行索引键值的查找;如果没有同时出现using where,表名索引用来读取数据而非执行查询动作。
4、Using where :表明使用where过滤
5、using join buffer:使用了连接缓存
6、impossible where:where子句的值总是false,不能用来获取任何元组
7、select tables optimized away:在没有group by子句的情况下,基于索引优化Min、max操作或者对于MyISAM存储引擎优化count(*),不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化。
8、distinct:优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342