基于SparkSQL实现的一套即席查询服务

IQL (项目地址:https://github.com/teeyog/IQL)

English | 简体中文

基于SparkSQL实现了一套即席查询服务,具有如下特性:

  • 优雅的交互方式,支持多种datasource/sink,多数据源混算
  • spark常驻服务,基于zookeeper的引擎自动发现
  • 负载均衡,多个引擎随机执行
  • 多session模式实现并行查询
  • 采用spark的FAIR调度,避免资源被大任务独占
  • 基于spark的动态资源分配,在无任务的情况下不会占用executor资源
  • 支持Cluster和Client模式启动
  • 基于Structured Streaming实现SQL动态添加流
  • 类似SparkShell交互式数据分析功能
  • 高效的script管理,配合import/include语法完成各script的关联
  • 对数据源操作的权限验证

支持的数据源:hdfs、hive、hbase、kafka、mysql、es、solr、mongo

支持的文件格式:parquet、csv、orc、json、text、xml

在Structured Streaming支持的Sink之外还增加了对Hbase、MySQL、es的支持

Quickstart

基本语法

load语法和save语法
load和save语法对数据进行加载和保存操作,只需将配置信息写在where条件后,
如加载mysql数据为一个临时表:
load jdbc.'tableName'
where driver="***"
    and url="***"
as tb_mysql;
这里的tb_mysql可以在后续随意使用,如:select * from tb_mysql; save tb_mysql as json.'path'。

如将数据保存到HBase:
save tb_mysql as hbase.'tbname'
where `hbase.zookeeper.quorum`="localhost:2181"

select语法
select语法和正常的sql没有区别,可以直接as 为一个临时表如:select * from tb_mysql limit 10 as tb_temp; 
这里的tb_temp可以在后续随意使用,select最后没有as **的情况下,会把结果直接显示在web端。
    
explain语法
可以直接explain一个select查询,也可以直接explain一个中间临时表如上面的tb_temp;

import语法
可以导入整个sql脚本

register语法
可以注册udf,注册watermark等

其他语法支持:create、drop、insert、refresh、set、show

HBase

加载数据

load hbase.t_mbl_user_version_info 
where `spark.table.schema`="userid:String,osversion:String,toolversion:String"
       and `hbase.table.schema`=":rowkey,info:osversion,info:toolversion" 
       and `hbase.zookeeper.quorum`="localhost:2181"
as tb;
参数 说明 默认值
hbase.zookeeper.quorum zookeeper地址 localhost:2181
spark.table.schema Spark临时表对应的schema(eg: "ID:String,appname:String,age:Int")
hbase.table.schema HBase表对应schema(eg: ":rowkey,info:appname,info:age")
spark.rowkey.view.name rowkey对应的dataframe创建的temp view名 ,设置了该值后只获取rowkey对应的数据

可获取指定rowkey集合对应的数据,spark.rowkey.view.name 即是rowkey集合对应的tempview,默认获取第一列为rowkey列

保存数据

save tb1 as hbase.tableName 
where `hbase.zookeeper.quorum`="localhost:2181"
      and `hbase.table.rowkey.filed`="name"
参数 说明 默认值
hbase.zookeeper.quorum zookeeper地址 localhost:2181
hbase.table.rowkey.field spark临时表中作为hbase的rowkey的字段名 第一个字段
bulkload.enable 是否启动bulkload false
hbase.table.name Hbase表名
hbase.table.family 列族名 info
hbase.table.region.splits 预分区方式1:直接指定预分区分区段,以数组字符串方式指定,如 ['1','2','3']
hbase.table.rowkey.prefix 预分区方式2:当rowkey是数字,预分区只需指定前缀的formate形式,如 00 即可生成00-99等100个分区
hbase.table.startKey 预分区开始key
hbase.table.endKey 预分区结束key
hbase.table.numReg 分区个数
hbase.check_table 写入hbase表时,是否需要检查表是否存在 false
hbase.cf.ttl ttl

MySQL

  • 加载数据
load jdbc.ai_log_count 
where driver="com.mysql.jdbc.Driver" 
      and url="jdbc:mysql://localhost/db?characterEncoding=utf8" 
      and user="root" 
      and password="***" 
as tb; 
  • 保存数据
save append tb as jdbc.aatest_delete;

注意:离线和实时任务都是可以用update模式的

文件操作 (其中formate可为:json、orc、csv、parquet、text)

  • 加载数据
load format.`path` as tb;
  • 保存数据
save tb as formate.`path` partitionBy uid coalesce 2;

Kafka

  • 离线
load kafka.`topicName`
where maxRatePerPartition="200"
   and `group.id`="consumerGroupId"
as tb;
select * from tb;
参数 说明 默认值
autoCommitOffset 是否提交offset false
  • 实时
load kafka.`mc-monitor` 
where startingoffsets="latest"
    and failOnDataLoss="false"
    and `spark.job.mode`="stream" 
as tb1;

register watermark.tb1
where eventTimeCol="timestamp"
and delayThreshold="10 seconds"

select window.end as time_end,
count(1) as count
from tb1 a  
group by  window(a.timestamp,"10 seconds","10 seconds")
as tb2;

save tb2 as json.`/tmp/abc6` 
where outputMode="Append"
    and streamName="Stream"
    and duration="10"
    and sendDingDingOnTerminated="true"
    and `mail.receiver`="3146635263@qq.com"
    and checkpointLocation="/tmp/cp/cp16";
参数 说明 默认值
spark.job.mode 任务模式(batch:离线任务,stream:实时任务) batch
mail.receiver 任务失败邮件通知(多个邮箱逗号分隔)
sendDingDingOnTerminated 钉钉Robot通知 false

实时任务失败会自动重启,可以通过streamJobMaxAttempts配置(默认3次)。

动态注册UDF函数

  • 方式一
register udf.`myupper`
where func="
    def apply(name:String)={
        name.toUpperCase
    }
";

load jsonStr.'
{"name":"ufo"}
{"name":"uu"}
{"name":"HIN"}
' as tb1;

select myupper(name) as newName from tb1;
  • 方式二
create temporary function myupper as 'cn.mc.udf.MyUPpperUDF' using jar 'hdfs://dsj01:8020/tmp/udf-test-1.0-SNAPSHOT.jar';

include(import等效)语法,通过路径引入脚本片段

import语法

参考

StreamingPro之MLSQL

spark sql在喜马拉雅的使用之xql

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容