java中间件之消息队列

一、消息队列为什么使用

分析:一个用消息队列的人,不知道为啥用,这就有点尴尬。没有复习这点,很容易被问蒙,然后就开始胡扯了。

回答:这个问题,咱只答三个最主要的应用场景(不可否认还有其他的,但是只答三个主要的),即以下六个字:解耦、异步、削峰

1.1解耦

传统模式:

传统模式的缺点:

系统间耦合性太强,如上图所示,系统A在代码中直接调用系统B和系统C的代码,如果将来D系统接入,系统A还需要修改代码,过于麻烦!


中间件模式:

中间件模式的的优点:

将消息写入消息队列,需要消息的系统自己从消息队列中订阅,从而系统A不需要做任何修改

1.2 异步

传统模式:

传统模式的缺点:

一些非必要的业务逻辑以同步的方式运行,太耗费时间。

 

中间件模式:

中间件模式的的优点:

将消息写入消息队列,非必要的业务逻辑以异步的方式运行,加快响应速度


1.3 削峰

传统模式:

传统模式的缺点:

并发量大的时候,所有的请求直接怼到数据库,造成数据库连接异常

 

中间件模式:

中间件模式的的优点:

系统A慢慢的按照数据库能处理的并发量,从消息队列中慢慢拉取消息。在生产中,这个短暂的高峰期积压是允许的。


二、消息队列的缺点

(1)系统可用性降低:你想啊,本来其他系统只要运行好好的,那你的系统就是正常的。现在你非要加个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性降低

(2)系统复杂性增加:要多考虑很多方面的问题,比如一致性问题、如何保证消息不被重复消费,如何保证保证消息可靠传输。因此,需要考虑的东西更多,系统复杂性增大。


三、消息队列为什么是高可用的

一个典型的Kafka集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

至于rabbitMQ,也有普通集群和镜像集群模式,自行去了解,比较简单,两小时即懂。要求,在回答高可用的问题时,应该能逻辑清晰的画出自己的MQ集群架构或清晰的叙述出来。


四、消息队列如何保证不被重复消费

(1)比如,你拿到这个消息做数据库的insert操作。那就容易了,给这个消息做一个唯一主键,那么就算出现重复消费的情况,就会导致主键冲突,避免数据库出现脏数据。

(2)再比如,你拿到这个消息做redis的set的操作,那就容易了,不用解决,因为你无论set几次结果都是一样的,set操作本来就算幂等操作。

(3)如果上面两种情况还不行,上大招。准备一个第三方介质,来做消费记录。以redis为例,给消息分配一个全局id,只要消费过该消息,将<id,message>以K-V形式写入redis。那消费者开始消费前,先去redis中查询有没消费记录即可。


五、消息队列如何保证可靠性传输

分析:我们在使用消息队列的过程中,应该做到消息不能多消费,也不能少消费。如果无法做到可靠性传输,可能给公司带来千万级别的财产损失。同样的,如果可靠性传输在使用过程中,没有考虑到,这不是给公司挖坑么,你可以拍拍屁股走了,公司损失的钱,谁承担。还是那句话,认真对待每一个项目,不要给公司挖坑。

回答:其实这个可靠性传输,每种MQ都要从三个角度来分析:生产者弄丢数据、消息队列弄丢数据、消费者弄丢数据

RabbitMQ

(1)生产者丢数据从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息。transaction机制就是说,发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事物就会回滚(channel.txRollback()),如果发送成功则提交事物(channel.txCommit())。

然而缺点就是吞吐量下降了。因此,按照博主的经验,生产上用confirm模式的居多。一旦channel进入confirm模式,所有在该信道上面发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个Ack给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了.如果rabiitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。处理Ack和Nack的代码如下所示(说好不上代码的,偷偷上了):


(2)消息队列丢数据处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。

那么如何持久化呢,这里顺便说一下吧,其实也很容易,就下面两步

1、将queue的持久化标识durable设置为true,则代表是一个持久的队列2、发送消息的时候将deliveryMode=2

这样设置以后,rabbitMQ就算挂了,重启后也能恢复数据

(3)消费者丢数据消费者丢数据一般是因为采用了自动确认消息模式。这种模式下,消费者会自动确认收到信息。这时rahbitMQ会立即将消息删除,这种情况下如果消费者出现异常而没能处理该消息,就会丢失该消息。至于解决方案,采用手动确认消息即可。

kafka

这里先引一张kafka Replication的数据流向图Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader中pull数据。

针对上述情况,得出如下分析(1)生产者丢数据在kafka生产中,基本都有一个leader和多个follwer。follwer会去同步leader的信息。因此,为了避免生产者丢数据,做如下两点配置

第一个配置要在producer端设置acks=all。这个配置保证了,follwer同步完成后,才认为消息发送成功。

在producer端设置retries=MAX,一旦写入失败,这无限重试

(2)消息队列丢数据针对消息队列丢数据的情况,无外乎就是,数据还没同步,leader就挂了,这时zookpeer会将其他的follwer切换为leader,那数据就丢失了。针对这种情况,应该做两个配置。

replication.factor参数,这个值必须大于1,即要求每个partition必须有至少2个副本

min.insync.replicas参数,这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系

这两个配置加上上面生产者的配置联合起来用,基本可确保kafka不丢数据

(3)消费者丢数据这种情况一般是自动提交了offset,然后你处理程序过程中挂了。kafka以为你处理好了。再强调一次offset是干嘛的offset:指的是kafka的topic中的每个消费组消费的下标。简单的来说就是一条消息对应一个offset下标,每次消费数据的时候如果提交offset,那么下次消费就会从提交的offset加一那里开始消费。比如一个topic中有100条数据,我消费了50条并且提交了,那么此时的kafka服务端记录提交的offset就是49(offset从0开始),那么下次消费的时候offset就从50开始消费。解决方案也很简单,改成手动提交即可。


六、消息队列如何保证的顺序性?

分析:其实并非所有的公司都有这种业务需求,但是还是对这个问题要有所复习。

回答:针对这个问题,通过某种算法,将需要保持先后顺序的消息放到同一个消息队列中(kafka中就是partition,rabbitMq中就是queue)。然后只用一个消费者去消费该队列。

有的人会问:那如果为了吞吐量,有多个消费者去消费怎么办?

这个问题,没有固定回答的套路。比如我们有一个微博的操作,发微博、写评论、删除微博,这三个异步操作。如果是这样一个业务场景,那只要重试就行。比如你一个消费者先执行了写评论的操作,但是这时候,微博都还没发,写评论一定是失败的,等一段时间。等另一个消费者,先执行写评论的操作后,再执行,就可以成功。

总之,针对这个问题,我的观点是保证入队有序就行,出队以后的顺序交给消费者自己去保证,没有固定套路。


十、各类MQ比较

1RabbitMQ

是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。

2Redis

是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

3ZeroMQ

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

4ActiveMQ

是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。

5Jafka/Kafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

(7)开发语言对比

Kafka:Scala

rabbitmq:Erlang

zeromq:c

rocketmq:java

activemq:java

(8)支持的协议对比

Kafka:自己定义的一套...(基于TCP)

rabbitmq:AMQP

zeromq:TCP、UDP

rocketmq:自己定义的一套...

activemq:OpenWire、STOMP、REST、XMPP、AMQP

(9)消息存储对比

Kafka:内存、磁盘、数据库。支持大量堆积。

kafka的最小存储单元是分区,一个topic包含多个分区,kafka创建主题时,这些分区会被分配在多个服务器上,通常一个broker一台服务器。 分区首领会均匀地分布在不同的服务器上,分区副本也会均匀的分布在不同的服务器上,确保负载均衡和高可用性,当新的broker加入集群的时候,部分副本会被移动到新的broker上。 根据配置文件中的目录清单,kafka会把新的分区分配给目录清单里分区数最少的目录。 默认情况下,分区器使用轮询算法把消息均衡地分布在同一个主题的不同分区中,对于发送时指定了key的情况,会根据key的hashcode取模后的值存到对应的分区中。


rabbitmq:内存、磁盘。支持少量堆积。

rabbitmq的消息分为持久化的消息和非持久化消息,不管是持久化的消息还是非持久化的消息都可以写入到磁盘。 持久化的消息在到达队列时就写入到磁盘,并且如果可以,持久化的消息也会在内存中保存一份备份,这样可以提高一定的性能,当内存吃紧的时候会从内存中清除。非持久化的消息一般只存在于内存中,在内存吃紧的时候会被换入到磁盘中,以节省内存。

引入镜像队列机制,可将重要队列“复制”到集群中的其他broker上,保证这些队列的消息不会丢失。配置镜像的队列,都包含一个主节点master和多个从节点slave,如果master失效,加入时间最长的slave会被提升为新的master,除发送消息外的所有动作都向master发送,然后由master将命令执行结果广播给各个slave,rabbitmq会让master均匀地分布在不同的服务器上,而同一个队列的slave也会均匀地分布在不同的服务器上,保证负载均衡和高可用性。


zeromq:消息发送端的内存或者磁盘中。不支持持久化。

rocketmq:磁盘。支持大量堆积。

commitLog文件存放实际的消息数据,每个commitLog上限是1G,满了之后会自动新建一个commitLog文件保存数据。ConsumeQueue队列只存放offset、size、tagcode,非常小,分布在多个broker上。ConsumeQueue相当于CommitLog的索引文件,消费者消费时会从consumeQueue中查找消息在commitLog中的offset,再去commitLog中查找元数据。

ConsumeQueue存储格式的特性,保证了写过程的顺序写盘(写CommitLog文件),大量数据IO都在顺序写同一个commitLog,满1G了再写新的。加上rocketmq是累计4K才强制从PageCache中刷到磁盘(缓存),所以高并发写性能突出。

activemq:内存、磁盘、数据库。支持少量堆积。

(10)消息事务对比

Kafka:支持

rabbitmq:支持。 客户端将信道设置为事务模式,只有当消息被rabbitMq接收,事务才能提交成功,否则在捕获异常后进行回滚。使用事务会使得性能有所下降 zeromq:不支持 rocketmq:支持

activemq:支持

(11)负载均衡对比

Kafka:支持负载均衡。

1>一个broker通常就是一台服务器节点。对于同一个Topic的不同分区,Kafka会尽力将这些分区分布到不同的Broker服务器上,zookeeper保存了broker、主题和分区的元数据信息。分区首领会处理来自客户端的生产请求,kafka分区首领会被分配到不同的broker服务器上,让不同的broker服务器共同分担任务。

每一个broker都缓存了元数据信息,客户端可以从任意一个broker获取元数据信息并缓存起来,根据元数据信息知道要往哪里发送请求。


2>kafka的消费者组订阅同一个topic,会尽可能地使得每一个消费者分配到相同数量的分区,分摊负载。


3>当消费者加入或者退出消费者组的时候,还会触发再均衡,为每一个消费者重新分配分区,分摊负载。

kafka的负载均衡大部分是自动完成的,分区的创建也是kafka完成的,隐藏了很多细节,避免了繁琐的配置和人为疏忽造成的负载问题。


4>发送端由topic和key来决定消息发往哪个分区,如果key为null,那么会使用轮询算法将消息均衡地发送到同一个topic的不同分区中。如果key不为null,那么会根据key的hashcode取模计算出要发往的分区。


rabbitmq:对负载均衡的支持不好。

1>消息被投递到哪个队列是由交换器和key决定的,交换器、路由键、队列都需要手动创建。

rabbitmq客户端发送消息要和broker建立连接,需要事先知道broker上有哪些交换器,有哪些队列。通常要声明要发送的目标队列,如果没有目标队列,会在broker上创建一个队列,如果有,就什么都不处理,接着往这个队列发送消息。假设大部分繁重任务的队列都创建在同一个broker上,那么这个broker的负载就会过大。(可以在上线前预先创建队列,无需声明要发送的队列,但是发送时不会尝试创建队列,可能出现找不到队列的问题,rabbitmq的备份交换器会把找不到队列的消息保存到一个专门的队列中,以便以后查询使用)


使用镜像队列机制建立rabbitmq集群可以解决这个问题,形成master-slave的架构,master节点会均匀分布在不同的服务器上,让每一台服务器分摊负载。slave节点只是负责转发,在master失效时会选择加入时间最长的slave成为master。

当新节点加入镜像队列的时候,队列中的消息不会同步到新的slave中,除非调用同步命令,但是调用命令后,队列会阻塞,不能在生产环境中调用同步命令。


2>当rabbitmq队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。

这种方式非常适合扩展,而且是专门为并发程序设计的。

如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,rabbitmq不再向这个消费者发送任何消息。


3>对于rabbitmq而言,客户端与集群建立的TCP连接不是与集群中所有的节点建立连接,而是挑选其中一个节点建立连接。

但是rabbitmq集群可以借助HAProxy、LVS技术,或者在客户端使用算法实现负载均衡,引入负载均衡之后,各个客户端的连接可以分摊到集群的各个节点之中。

(12)客户端均衡算法对比

1)轮询法。按顺序返回下一个服务器的连接地址。

2)加权轮询法。给配置高、负载低的机器配置更高的权重,让其处理更多的请求;而配置低、负载高的机器,给其分配较低的权重,降低其系统负载。

3)随机法。随机选取一个服务器的连接地址。

4)加权随机法。按照概率随机选取连接地址。

5)源地址哈希法。通过哈希函数计算得到的一个数值,用该数值对服务器列表的大小进行取模运算。

6)最小连接数法。动态选择当前连接数最少的一台服务器的连接地址。


zeromq:去中心化,不支持负载均衡。本身只是一个多线程网络库。


rocketmq:支持负载均衡。

一个broker通常是一个服务器节点,broker分为master和slave,master和slave存储的数据一样,slave从master同步数据。

1>nameserver与每个集群成员保持心跳,保存着Topic-Broker路由信息,同一个topic的队列会分布在不同的服务器上。


2>发送消息通过轮询队列的方式发送,每个队列接收平均的消息量。发送消息指定topic、tags、keys,无法指定投递到哪个队列(没有意义,集群消费和广播消费跟消息存放在哪个队列没有关系)。

tags选填,类似于 Gmail 为每封邮件设置的标签,方便服务器过滤使用。目前只支 持每个消息设置一个 tag,所以也可以类比为 Notify 的 MessageType 概念。

keys选填,代表这条消息的业务关键词,服务器会根据 keys 创建哈希索引,设置后, 可以在 Console 系统根据 Topic、Keys 来查询消息,由于是哈希索引,请尽可能 保证 key 唯一,例如订单号,商品 Id 等。


3>rocketmq的负载均衡策略规定:Consumer数量应该小于等于Queue数量,如果Consumer超过Queue数量,那么多余的Consumer 将不能消费消息。这一点和kafka是一致的,rocketmq会尽可能地为每一个Consumer分配相同数量的队列,分摊负载。

activemq:支持负载均衡。可以基于zookeeper实现负载均衡。

(13)集群方式对比

Kafka:天然的‘Leader-Slave’无状态集群,每台服务器既是Master也是Slave。

分区首领均匀地分布在不同的kafka服务器上,分区副本也均匀地分布在不同的kafka服务器上,所以每一台kafka服务器既含有分区首领,同时又含有分区副本,每一台kafka服务器是某一台kafka服务器的Slave,同时也是某一台kafka服务器的leader。


kafka的集群依赖于zookeeper,zookeeper支持热扩展,所有的broker、消费者、分区都可以动态加入移除,而无需关闭服务,与不依靠zookeeper集群的mq相比,这是最大的优势。

rabbitmq:支持简单集群,'复制'模式,对高级集群模式支持不好。

rabbitmq的每一个节点,不管是单一节点系统或者是集群中的一部分,要么是内存节点,要么是磁盘节点,集群中至少要有一个是磁盘节点。

在rabbitmq集群中创建队列,集群只会在单个节点创建队列进程和完整的队列信息(元数据、状态、内容),而不是在所有节点上创建。

引入镜像队列,可以避免单点故障,确保服务的可用性,但是需要人为地为某些重要的队列配置镜像。


zeromq:去中心化,不支持集群。


rocketmq:常用 多对'Master-Slave' 模式,开源版本需手动切换Slave变成Master

Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。

Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。


Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。

Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。


客户端先找到NameServer,然后通过NameServer再找到 Broker。

一个topic有多个队列,这些队列会均匀地分布在不同的broker服务器上。rocketmq队列的概念和kafka的分区概念是基本一致的,kafka同一个topic的分区尽可能地分布在不同的broker上,分区副本也会分布在不同的broker上。

rocketmq集群的slave会从master拉取数据备份,master分布在不同的broker上。

activemq:支持简单集群模式,比如'主-备',对高级集群模式支持不好。

(14)管理界面对比

Kafka:一般 rabbitmq:好 zeromq:无 rocketmq:无 activemq:一般

(15)可用性对比

Kafka:非常高(分布式)

rabbitmq:高(主从)

zeromq:高。

rocketmq:非常高(分布式)

activemq:高(主从)

(16)消息重复对比

Kafka:支持at least once、at most once

rabbitmq:支持at least once、at most once

zeromq:只有重传机制,但是没有持久化,消息丢了重传也没有用。既不是at least once、也不是at most once、更不是exactly only once

rocketmq:支持at least once

activemq:支持at least once

(17)吞吐量TPS对比

Kafka:极大 Kafka按批次发送消息和消费消息。发送端将多个小消息合并,批量发向Broker,消费端每次取出一个批次的消息批量处理。 rabbitmq:比较大 zeromq:极大 rocketmq:大 rocketMQ接收端可以批量消费消息,可以配置每次消费的消息数,但是发送端不是批量发送。 activemq:比较大

(18)订阅形式和消息分发对比

Kafka:基于topic以及按照topic进行正则匹配的发布订阅模式。

【发送】

发送端由topic和key来决定消息发往哪个分区,如果key为null,那么会使用轮询算法将消息均衡地发送到同一个topic的不同分区中。如果key不为null,那么会根据key的hashcode取模计算出要发往的分区。


【接收】

1>consumer向群组协调器broker发送心跳来维持他们和群组的从属关系以及他们对分区的所有权关系,所有权关系一旦被分配就不会改变除非发生再均衡(比如有一个consumer加入或者离开consumer group),consumer只会从对应的分区读取消息。

2>kafka限制consumer个数要少于分区个数,每个消息只会被同一个 Consumer Group的一个consumer消费(非广播)。

3>kafka的 Consumer Group订阅同一个topic,会尽可能地使得每一个consumer分配到相同数量的分区,不同 Consumer Group订阅同一个主题相互独立,同一个消息会被不同的 Consumer Group处理。


rabbitmq:提供了4种:direct, topic ,Headers和fanout。

【发送】

先要声明一个队列,这个队列会被创建或者已经被创建,队列是基本存储单元。

由exchange和key决定消息存储在哪个队列。

direct>发送到和bindingKey完全匹配的队列。

topic>路由key是含有"."的字符串,会发送到含有“*”、“#”进行模糊匹配的bingKey对应的队列。

fanout>与key无关,会发送到所有和exchange绑定的队列

headers>与key无关,消息内容的headers属性(一个键值对)和绑定键值对完全匹配时,会发送到此队列。此方式性能低一般不用


【接收】

rabbitmq的队列是基本存储单元,不再被分区或者分片,对于我们已经创建了的队列,消费端要指定从哪一个队列接收消息。

当rabbitmq队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。

这种方式非常适合扩展,而且是专门为并发程序设计的。

如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,rabbitmq不再向这个消费者发送任何消息。


zeromq:点对点(p2p)

rocketmq:基于topic/messageTag以及按照消息类型、属性进行正则匹配的发布订阅模式

【发送】

发送消息通过轮询队列的方式发送,每个队列接收平均的消息量。发送消息指定topic、tags、keys,无法指定投递到哪个队列(没有意义,集群消费和广播消费跟消息存放在哪个队列没有关系)。

tags选填,类似于 Gmail 为每封邮件设置的标签,方便服务器过滤使用。目前只支 持每个消息设置一个 tag,所以也可以类比为 Notify 的 MessageType 概念。

keys选填,代表这条消息的业务关键词,服务器会根据 keys 创建哈希索引,设置后, 可以在 Console 系统根据 Topic、Keys 来查询消息,由于是哈希索引,请尽可能 保证 key 唯一,例如订单号,商品 Id 等。


【接收】

1>广播消费。一条消息被多个Consumer消费,即使Consumer属于同一个ConsumerGroup,消息也会被ConsumerGroup中的每个Consumer都消费一次。

2>集群消费。一个 Consumer Group中的Consumer实例平均分摊消费消息。例如某个Topic有 9 条消息,其中一个Consumer Group有3个实例,那么每个实例只消费其中的 3 条消息。即每一个队列都把消息轮流分发给每个consumer。


activemq:点对点(p2p)、广播(发布-订阅)

点对点模式,每个消息只有1个消费者;

发布/订阅模式,每个消息可以有多个消费者。

【发送】

点对点模式:先要指定一个队列,这个队列会被创建或者已经被创建。

发布/订阅模式:先要指定一个topic,这个topic会被创建或者已经被创建。


【接收】

点对点模式:对于已经创建了的队列,消费端要指定从哪一个队列接收消息。

发布/订阅模式:对于已经创建了的topic,消费端要指定订阅哪一个topic的消息。

(19)顺序消息对比

Kafka:支持。

设置生产者的max.in.flight.requests.per.connection为1,可以保证消息是按照发送顺序写入服务器的,即使发生了重试。

kafka保证同一个分区里的消息是有序的,但是这种有序分两种情况

1>key为null,消息逐个被写入不同主机的分区中,但是对于每个分区依然是有序的

2>key不为null , 消息被写入到同一个分区,这个分区的消息都是有序。


rabbitmq:不支持

zeromq:不支持

rocketmq:支持

activemq:不支持

(20)消息确认对比

Kafka:支持。

1>发送方确认机制

ack=0,不管消息是否成功写入分区

ack=1,消息成功写入首领分区后,返回成功

ack=all,消息成功写入所有分区后,返回成功。


2>接收方确认机制

自动或者手动提交分区偏移量,早期版本的kafka偏移量是提交给Zookeeper的,这样使得zookeeper的压力比较大,更新版本的kafka的偏移量是提交给kafka服务器的,不再依赖于zookeeper群组,集群的性能更加稳定。


rabbitmq:支持。

1>发送方确认机制,消息被投递到所有匹配的队列后,返回成功。如果消息和队列是可持久化的,那么在写入磁盘后,返回成功。支持批量确认和异步确认。

2>接收方确认机制,设置autoAck为false,需要显式确认,设置autoAck为true,自动确认。

当autoAck为false的时候,rabbitmq队列会分成两部分,一部分是等待投递给consumer的消息,一部分是已经投递但是没收到确认的消息。如果一直没有收到确认信号,并且consumer已经断开连接,rabbitmq会安排这个消息重新进入队列,投递给原来的消费者或者下一个消费者。

未确认的消息不会有过期时间,如果一直没有确认,并且没有断开连接,rabbitmq会一直等待,rabbitmq允许一条消息处理的时间可以很久很久。


zeromq:支持。

rocketmq:支持。

activemq:支持。

(21)消息回溯对比

Kafka:支持指定分区offset位置的回溯。

rabbitmq:不支持

zeromq:不支持

rocketmq:支持指定时间点的回溯。

activemq:不支持

(22)消息重试对比

Kafka:不支持,但是可以实现。

kafka支持指定分区offset位置的回溯,可以实现消息重试。


rabbitmq:不支持,但是可以利用消息确认机制实现。

rabbitmq接收方确认机制,设置autoAck为false。

当autoAck为false的时候,rabbitmq队列会分成两部分,一部分是等待投递给consumer的消息,一部分是已经投递但是没收到确认的消息。如果一直没有收到确认信号,并且consumer已经断开连接,rabbitmq会安排这个消息重新进入队列,投递给原来的消费者或者下一个消费者。


zeromq:不支持,

rocketmq:支持。

消息消费失败的大部分场景下,立即重试99%都会失败,所以rocketmq的策略是在消费失败时定时重试,每次时间间隔相同。

1>发送端的 send 方法本身支持内部重试,重试逻辑如下:

a)至多重试3次;

b)如果发送失败,则轮转到下一个broker;

c)这个方法的总耗时不超过sendMsgTimeout 设置的值,默认 10s,超过时间不在重试。


2>接收端。

Consumer消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer 消费消息失败通常可以分为以下两种情况:

1.由于消息本身的原因,例如反序列化失败,消息数据本身无法处理(例如话费充值,当前消息的手机号被

注销,无法充值)等。定时重试机制,比如过10s秒后再重试。

2.由于依赖的下游应用服务不可用,例如 db 连接不可用,外系统网络不可达等。

即使跳过当前失败的消息,消费其他消息同样也会报错。这种情况可以sleep 30s,再消费下一条消息,减轻 Broker 重试消息的压力。


activemq:不支持

(23)并发度对比

Kafka:高

一个线程一个消费者,kafka限制消费者的个数要小于等于分区数,如果要提高并行度,可以在消费者中再开启多线程,或者增加consumer实例数量。


rabbitmq:极高

本身是用Erlang语言写的,并发性能高。

可在消费者中开启多线程,最常用的做法是一个channel对应一个消费者,每一个线程把持一个channel,多个线程复用connection的tcp连接,减少性能开销。

当rabbitmq队列拥有多个消费者的时候,队列收到的消息将以轮询的分发方式发送给消费者。每条消息只会发送给订阅列表里的一个消费者,不会重复。

这种方式非常适合扩展,而且是专门为并发程序设计的。

如果某些消费者的任务比较繁重,那么可以设置basicQos限制信道上消费者能保持的最大未确认消息的数量,在达到上限时,rabbitmq不再向这个消费者发送任何消息。


zeromq:高


rocketmq:高

1>rocketmq限制消费者的个数少于等于队列数,但是可以在消费者中再开启多线程,这一点和kafka是一致的,提高并行度的方法相同。

修改消费并行度方法

a)同一个 ConsumerGroup 下,通过增加 Consumer 实例数量来提高并行度,超过订阅队列数的 Consumer实例无效。

b)提高单个 Consumer 的消费并行线程,通过修改参数consumeThreadMin、consumeThreadMax

2>同一个网络连接connection,客户端多个线程可以同时发送请求,连接会被复用,减少性能开销。


activemq:高

单个ActiveMQ的接收和消费消息的速度在1万笔/秒(持久化 一般为1-2万, 非持久化 2 万以上),在生产环境中部署10个Activemq就能达到10万笔/秒以上的性能,部署越多的activemq broker 在MQ上latency也就越低,系统吞吐量也就越高

25综合对比:

ActiveMQ:历史悠久的开源项目,已经在很多产品中得到应用,实现了JMS1.1规范,可以和spring-jms轻松融合,实现了多种协议,不够轻巧(源代码比RocketMQ多),支持持久化到数据库,对队列数较多的情况支持不好。RabbitMq:它比kafka成熟,支持AMQP事务处理,在可靠性上,RabbitMq超过kafka,在性能方面超过ActiveMQ。Kafka:Kafka设计的初衷就是处理日志的,不支持AMQP事务处理,可以看做是一个日志系统,针对性很强,所以它并没有具备一个成熟MQ应该具备的特性Kafka的性能(吞吐量、tps)比RabbitMq要强,如果用来做大数据量的快速处理是比RabbitMq有优势的



©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容