数据科学和人工智能技术笔记 五、文本预处理

五、文本预处理

作者:Chris Albon

译者:飞龙

协议:CC BY-NC-SA 4.0

词袋

image
# 加载库
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd

# 创建文本
text_data = np.array(['I love Brazil. Brazil!',
                      'Sweden is best',
                      'Germany beats both'])

# 创建词袋特征矩阵
count = CountVectorizer()
bag_of_words = count.fit_transform(text_data)

# 展示特征矩阵
bag_of_words.toarray()

'''
array([[0, 0, 0, 2, 0, 0, 1, 0],
       [0, 1, 0, 0, 0, 1, 0, 1],
       [1, 0, 1, 0, 1, 0, 0, 0]], dtype=int64) 
'''

# 获取特征名称
feature_names = count.get_feature_names()

# 查看特征名称
feature_names

# ['beats', 'best', 'both', 'brazil', 'germany', 'is', 'love', 'sweden'] 

# 创建数据帧
pd.DataFrame(bag_of_words.toarray(), columns=feature_names)
beats best both brazil germany is love sweden
0 0 0 0 2 0 0 1 0
1 0 1 0 0 0 1 0 1
2 1 0 1 0 1 0 0 0

解析 HTML

# 加载库
from bs4 import BeautifulSoup

# 创建一些 HTML 代码
html = "<div class='full_name'><span style='font-weight:bold'>Masego</span> Azra</div>"

# 解析 html
soup = BeautifulSoup(html, "lxml")

# 寻找带有 "full_name" 类的 <div>,展示文本
soup.find("div", { "class" : "full_name" }).text

# 'Masego Azra' 

移除标点

# 加载库
import string
import numpy as np

# 创建文本
text_data = ['Hi!!!! I. Love. This. Song....', 
             '10000% Agree!!!! #LoveIT', 
             'Right?!?!']

# 创建函数,使用 string.punctuation 移除所有标点
def remove_punctuation(sentence: str) -> str:
    return sentence.translate(str.maketrans('', '', string.punctuation))

# 应用函数
[remove_punctuation(sentence) for sentence in text_data]

# ['Hi I Love This Song', '10000 Agree LoveIT', 'Right'] 

移除停止词

# 加载库
from nltk.corpus import stopwords

# 你第一次需要下载停止词的集合
import nltk
nltk.download('stopwords')

'''
[nltk_data] Downloading package stopwords to
[nltk_data]     /Users/chrisalbon/nltk_data...
[nltk_data]   Package stopwords is already up-to-date!

True 
'''

# 创建单词标记
tokenized_words = ['i', 'am', 'going', 'to', 'go', 'to', 'the', 'store', 'and', 'park']

# 加载停止词
stop_words = stopwords.words('english')

# 展示停止词
stop_words[:5]

# ['i', 'me', 'my', 'myself', 'we'] 

# 移除停止词
[word for word in tokenized_words if word not in stop_words]

# ['going', 'go', 'store', 'park'] 

替换字符

# 导入库
import re

# 创建文本
text_data = ['Interrobang. By Aishwarya Henriette',
             'Parking And Going. By Karl Gautier',
             'Today Is The night. By Jarek Prakash']

# 移除句号
remove_periods = [string.replace('.', '') for string in text_data]

# 展示文本
remove_periods

'''
['Interrobang By Aishwarya Henriette',
 'Parking And Going By Karl Gautier',
 'Today Is The night By Jarek Prakash'] 
'''

# 创建函数
def replace_letters_with_X(string: str) -> str:
    return re.sub(r'[a-zA-Z]', 'X', string)

# 应用函数
[replace_letters_with_X(string) for string in remove_periods]

'''
['XXXXXXXXXXX XX XXXXXXXXX XXXXXXXXX',
 'XXXXXXX XXX XXXXX XX XXXX XXXXXXX',
 'XXXXX XX XXX XXXXX XX XXXXX XXXXXXX'] 
'''

词干提取

image
# 加载库
from nltk.stem.porter import PorterStemmer

# 创建单词标记
tokenized_words = ['i', 'am', 'humbled', 'by', 'this', 'traditional', 'meeting']

词干提取通过识别和删除词缀(例如动名词)同时保持词的根本意义,将词语简化为词干。 NLTK 的PorterStemmer实现了广泛使用的 Porter 词干算法。

# 创建提取器
porter = PorterStemmer()

# 应用提取器
[porter.stem(word) for word in tokenized_words]

# ['i', 'am', 'humbl', 'by', 'thi', 'tradit', 'meet'] 

移除空白

# 创建文本
text_data = ['   Interrobang. By Aishwarya Henriette     ',
             'Parking And Going. By Karl Gautier',
             '    Today Is The night. By Jarek Prakash   ']

# 移除空白
strip_whitespace = [string.strip() for string in text_data]

# 展示文本
strip_whitespace

'''
['Interrobang. By Aishwarya Henriette',
 'Parking And Going. By Karl Gautier',
 'Today Is The night. By Jarek Prakash'] 
'''

词性标签

# 加载库
from nltk import pos_tag
from nltk import word_tokenize

# 创建文本
text_data = "Chris loved outdoor running"

# 使用预训练的词性标注器
text_tagged = pos_tag(word_tokenize(text_data))

# 展示词性
text_tagged

# [('Chris', 'NNP'), ('loved', 'VBD'), ('outdoor', 'RP'), ('running', 'VBG')] 

输出是一个元组列表,包含单词和词性的标记。 NLTK 使用 Penn Treebank 词性标签。

标签 词性
NNP 专有名词,单数
NN 名词,单数或集体
RB 副词
VBD 动词,过去式
VBG 动词,动名词或现在分词
JJ 形容词
PRP 人称代词

TF-IDF

image
# 加载库
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd

# 创建文本
text_data = np.array(['I love Brazil. Brazil!',
                      'Sweden is best',
                      'Germany beats both'])

# 创建 tf-idf 特征矩阵
tfidf = TfidfVectorizer()
feature_matrix = tfidf.fit_transform(text_data)

# 展示 tf-idf 特征矩阵
feature_matrix.toarray()

'''
array([[ 0.        ,  0.        ,  0.        ,  0.89442719,  0.        ,
         0.        ,  0.4472136 ,  0.        ],
       [ 0.        ,  0.57735027,  0.        ,  0.        ,  0.        ,
         0.57735027,  0.        ,  0.57735027],
       [ 0.57735027,  0.        ,  0.57735027,  0.        ,  0.57735027,
         0.        ,  0.        ,  0.        ]]) 
'''

# 展示 tf-idf 特征矩阵
tfidf.get_feature_names()

# ['beats', 'best', 'both', 'brazil', 'germany', 'is', 'love', 'sweden'] 

# 创建数据帧
pd.DataFrame(feature_matrix.toarray(), columns=tfidf.get_feature_names())
beats best both brazil germany is love sweden
0 0.00000 0.00000 0.00000 0.894427 0.00000 0.00000 0.447214 0.00000
1 0.00000 0.57735 0.00000 0.000000 0.00000 0.57735 0.000000 0.57735
2 0.57735 0.00000 0.57735 0.000000 0.57735 0.00000 0.000000 0.00000

文本分词

# 加载库
from nltk.tokenize import word_tokenize, sent_tokenize

# 创建文本
string = "The science of today is the technology of tomorrow. Tomorrow is today."

# 对文本分词
word_tokenize(string)

'''
['The',
 'science',
 'of',
 'today',
 'is',
 'the',
 'technology',
 'of',
 'tomorrow',
 '.',
 'Tomorrow',
 'is',
 'today',
 '.'] 
'''

# 对句子分词
sent_tokenize(string)

# ['The science of today is the technology of tomorrow.', 'Tomorrow is today.'] 
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容