机器学习总结 (机器学习实践笔记)

1.1:机器学习方法的类别


  1. 有监督学习
    有监督学习是机器学习中最常见的类型。它本质上是一种函数逼近。我们试图将数据点映射为一个模糊函数。通过优化,我们希望依据训练数据拟合出一个与未来数据取得最佳逼近效果的函数。该类方法之所以成为“有监督方法”,是因为它们需要接收一个训练集或学习集
  2. 无监督学习
    无监督学习只分析数据,而不向某个Y映射。该类方法之所以称为“无监督方法”,是因为它们并不知道输出结果为何物,而是需要自己提供。
  3. 强化学习
    强化学习与有监督学习相似,但会对每一步生成一个“回报”。例如,好比一只在迷宫中寻找奶酪的老鼠,它希望找到奶酪,但绝大多数时候它不会得到任何奖励,除非最终找到奶酪
1.1

1.2:机器学习算法矩阵


  • KNN
    有监督学习-基于实例的-一般说来,KNN适合度量基于距离的逼近;易受维数灾难的影响-适于求解基于距离的问题

  • 朴素贝叶斯
    有监督学习-概率的-适用于那些输入相互独立的问题-适用于那些各类概率值为正的问题

  • SVM
    有监督学习-决策面-适用于两类分类中具有明确界限的问题-适用于两类分类问题

  • 神经网络
    有监督学习-非线性函数逼近-几乎没有约束偏置-适合二元输入问题

  • (核)岭回归
    有监督学习-回归-对所能解决的问题具有很低的约束偏置-适合用于连续变量

  • 隐马尔科夫模型
    有监督/无监督-无后效性-适用于那些符合马尔科夫假设的系统信息-适用于时间序列数据和无记忆的信息

  • 聚类
    无监督-聚类-无限制-适用于给定某种形式的距离(欧氏距离、马氏距离或其他距离)时,数据本身具有分组形式

  • 过滤
    无监督-特征变换-无限制-适用于数据中有大量变量需要过滤的场合

1.2

1.3:利用上表可明确如何解决一个给定问题


例如,对于确定某人居住的社区这样的问题,KNN便是一个很好的选择,而朴素贝叶斯分类模型则丝毫派不上用场。

朴素贝叶斯分类模型可以确定情绪或其他类型的概率。

对于寻求两类数据划分边界的问题,支持向量机算法则非常适合,而且不易受维数灾难的影响。因此,对于拥有大量特征的文本问题,支持向量机通常都是很好的选择。

神经网络可以求解从分类到自动驾驶这样范围很广的问题。

核岭回归则是向线性回归模型中添加了一种简单的技巧,并且能够找到曲线的均值。

隐马尔科夫模型能够追踪乐谱,标注词性,并适用于其它类似于系统的应用。

聚类算法适合于那些不含明确输出的数据分组问题。这类算法对数据分析非常有帮助,也可用于构建数据库或高效地保存数据。

过滤方法非常适用于克服维数灾难 。为将所提取到的像素转换为特征,大量使用了该方法。

1.4 更关键的思想


学习算法仅仅是一个开始。最重要的是,我们应当认识到,选择什么方法并不是最关键的,要尝试解决的问题才是最重要的。
这正是我们使用交叉验证、度量精度、查全率和准确率的原因。对每一个步骤进行检查和测试,保证了我们至少在接近更优的答案。

  • 推荐书籍
  1. The Art and Science of Algorithms that Make Sense of Data (2012)
  2. Information Theory, Inference and Learning Algorithms (2003)
    视频地址 下载地址 豆瓣9.2分
  3. Machine Learning (1997)
  4. Artificial Intelligence: A Modern Approach (2009)
  5. Programming Collective Intelligence Building Smart Web 2.0 Applications (2007) 即 集体智慧编程,豆瓣9.0分
  6. Reinforcement Learning: An Introduction (1998)
  7. Geoffrey E. Hinton 的讲义
  8. Andrew Ng 的讲义
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 200,176评论 5 469
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,190评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 147,232评论 0 332
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,953评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,879评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,177评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,626评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,295评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,436评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,365评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,414评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,096评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,685评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,771评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,987评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,438评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,032评论 2 341

推荐阅读更多精彩内容