CDH配置Spark On Hue

CDH配置Spark On Hue

背景

在初入大数据领域时,编写的代码往往都是轻量级的,对于我这个小白来说尤其希望编写Scala-spark代码可以像python on JupyterNotebook一样,一步出一个结果,让我清楚地明白我的代码是否可以运行以及运行结果是什么,而不是在ide中debug,这里并不是说debug工具不好,恰恰相反,能熟练运用debug工具的才算真正入了程序员的门槛。但技术的进化不就是为了降低使用者的门槛吗?所以今天还是聊一聊对我这样的小白友好的大数据的可视化与交互工具——Hue。
实际上大数据的可视化与交互工具并非只有Hue,常见的还有Zeppelin、toree等,小弟不才,这几个工具都用过一段时间,后面有机会的话会依次分享其搭建过程。那么Hue和其他两款工具相比又有什么优势呢?
就功能而言:

  • Zeppelin只提供了单一的数据处理功能,包括数据摄取、数据发现、数据分析、数据可视化等都属于数据处理的范畴。
  • toree需要借助JupyterNotebook环境进行搭建,其功能相对zeppelin来说基本相同,但其可视化功能仍需借助其他框架来完成,使用界面还没有Zeppelin高端,但就是这样一个哪哪都不行的工具我竟然一直在用,原因在于其足够简单,简单的让我从python迁移到spark没有任何阻碍。
  • 最后再说Hue,Hue的功能相对丰富的多,除了类似的数据处理,还有元数据管理、Oozie工作流管理、作业管理、用户管理、Sqoop集成等很多管理功能。从这点看,Zeppelin只是一个数据处理工具,而Hue更像是一个综合管理工具。
    就使用场景而言:
  • Zeppelin适合单一数据处理、但后端处理语言繁多的场景,尤其适合Spark。
  • toree和Zeppelin差不多,如果你不介意其简陋的外表。
  • Hue适合与Hadoop集群的多个组件交互、如Oozie工作流、Sqoop等联合处理数据的场景,尤其适合与Impala协同工作。

    前提条件

    安装及配置Livy

    何为Livy?

    Livy是一个提供rest接口和spark集群交互的服务。它可以提交spark
    job或者spark一段代码,同步或者异步的返回结果;也提供sparkcontext的管理,通过restfull接口或RPC客户端库。Livy也简化了与spark与应用服务的交互,这允许通过web/mobile与spark的使用交互。其他特点还包含:
  1. 长时间运行的SparkContext,允许多个spark job和多个client使用。
  2. 在多个spark job和客户端之间共享RDD和Dataframe
  3. 多个sparkcontext可以简单的管理,并运行在集群中而不是Livy Server,以此获取更好的容错性和并行度。
  4. 作业可以通过重新编译的jar、片段代码、或Java/Scala的客户端API提交。
    Livy结合了spark job server和Zeppelin的优点,并解决了spark job server和Zeppelin的缺点。
  5. 支持jar和snippet code
  6. 支持SparkContext和Job的管理
  7. 支持不同SparkContext运行在不同进程,同一个进程只能运行一个SparkContext
  8. 支持Yarn cluster模式

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容