决策树、随机森林

用泰坦尼克号事件的数据集练习一下决策树和随机森林的API。

分析数据集信息

先读入数据集,看看有哪些特征:

import pandas as pd

titanic = pd.read_csv("titanic.csv")

# 分析数据集信息
print("*" * 30 + " info " + "*" * 30)
print(titanic.info())
print(titanic.head())

输出:

****************************** info ******************************
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
None
   PassengerId  Survived  Pclass    ...        Fare Cabin  Embarked
0            1         0       3    ...      7.2500   NaN         S
1            2         1       1    ...     71.2833   C85         C
2            3         1       3    ...      7.9250   NaN         S
3            4         1       1    ...     53.1000  C123         S
4            5         0       3    ...      8.0500   NaN         S

[5 rows x 12 columns]

survived字段表示是否生存,我们以此作为预测目标。

y = titanic['survived']
print(y.head())

输出:

0    0
1    1
2    1
3    1
4    0
Name: survived, dtype: int64

我们取其中三个特征做分析演示,分别是:

  • pclass:1-一等舱,2-二等舱,3-三等舱
  • age年龄
  • sex性别
x = titanic[['pclass', 'age', 'sex']]
print(x.info())
print(x.head())

输出:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 3 columns):
Pclass    891 non-null int64
Age       714 non-null float64
Sex       891 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 21.0+ KB
None
   Pclass   Age     Sex
0       3  22.0    male
1       1  38.0  female
2       3  26.0  female
3       1  35.0  female
4       3  35.0    male

缺失值处理

age字段存在缺失,用均值填充:

age_mean = x['age'].mean()
print("*" * 30 + " age_mean " + "*" * 30)
print(age_mean)
x['age'].fillna(age_mean, inplace=True)
print("*" * 30 + " 处理age缺失值后 " + "*" * 30)
print(x.info())

输出:

****************************** age_mean ******************************
29.69911764705882
****************************** 处理age缺失值后 ******************************
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 3 columns):
Pclass    891 non-null int64
Age       891 non-null float64
Sex       891 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 21.0+ KB

特征抽取 - onehot编码

为了方便使用字典特征抽取,构造字典列表:

x_dict_list = x.to_dict(orient='records')
print("*" * 30 + " train_dict " + "*" * 30)
print(pd.Series(x_dict_list[:5]))

dict_vec = DictVectorizer(sparse=False)
x = dict_vec.fit_transform(x_dict_list)
print("*" * 30 + " onehot编码 " + "*" * 30)
print(dict_vec.get_feature_names())
print(x[:5])
****************************** train_dict ******************************
0      {'Pclass': 3, 'Age': 22.0, 'Sex': 'male'}
1    {'Pclass': 1, 'Age': 38.0, 'Sex': 'female'}
2    {'Pclass': 3, 'Age': 26.0, 'Sex': 'female'}
3    {'Pclass': 1, 'Age': 35.0, 'Sex': 'female'}
4      {'Pclass': 3, 'Age': 35.0, 'Sex': 'male'}
dtype: object
****************************** onehot编码 ******************************
['Age', 'Pclass', 'Sex=female', 'Sex=male']
[[22.  3.  0.  1.]
 [38.  1.  1.  0.]
 [26.  3.  1.  0.]
 [35.  1.  1.  0.]
 [35.  3.  0.  1.]]

划分训练集和测试集

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

决策树分类器

dec_tree = DecisionTreeClassifier()
dec_tree.fit(x_train, y_train)

print("*" * 30 + " 准确率 " + "*" * 30)
print(dec_tree.score(x_test, y_test))

输出:

****************************** 准确率 ******************************
0.7892376681614349

随机森林分类器

  • n_jobs: -1表示设置为核心数量
  • n_estimators: 决策树数目
  • max_depth: 树最大深度

同时使用网格搜索最优超参数:

rf = RandomForestClassifier(n_jobs=-1)
param = {
    "n_estimators": [120, 200, 300, 500, 800, 1200],
    "max_depth": [5, 8, 15, 25, 30]
}
# 2折交叉验证
search = GridSearchCV(rf, param_grid=param, cv=2)
print("*" * 30 + " 超参数网格搜索 " + "*" * 30)

start_time = time.time()
search.fit(x_train, y_train)
print("耗时:{}".format(time.time() - start_time))
print("最优参数:{}".format(search.best_params_))

print("*" * 30 + " 准确率 " + "*" * 30)
print(search.score(x_test, y_test))

输出:

****************************** 超参数网格搜索 ******************************
耗时:66.85670185089111
最优参数:{'max_depth': 5, 'n_estimators': 120}
****************************** 准确率 ******************************
0.7847533632286996

最优的参数是{'max_depth': 5, 'n_estimators': 120}
在我的2015款MacBookPro上,仅2折的交叉验证就跑了66秒。- -|

源码

Github: DecisionTree

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容