Celery简介

Celery(芹菜)是一个异步任务队列/基于分布式消息传递的作业队列。

Celery用于生产系统每天处理数以百万计的任务。

Celery是用Python编写的,但该协议可以在任何语言实现。它也可以与其他语言通过webhooks实现。

由于Celery 3.0系列对以前的系列进行了大量重构优化,现在开始使用就没必要研究旧版本了,所以此介绍以3.0.24的文档为基础。

Celery的工作结构

在使用Celery的时候要明白它的大致结构,Celery的结构非常简单,大致分为3个部分:

  1. worker部分负责任务的处理,即工作线程,在我的理解中工作线程就是你写的python代码,当然还包括python调用系统工具功能
  2. broker部分负责任务消息的分发以及任务结果的存储,这部分任务主要由中间数据存储系统完成,比如消息队列服务器RabbitMQ、redis、
    Amazon SQS、MongoDB、IronMQ等或者关系型数据库,使用关系型数据库依赖sqlalchemy或者django的ORM
  3. Celery主类,进行任务最开始的指派与执行控制,他可以是单独的python脚本,也可以和其他程序结合,应用到django或者flask等
    web框架里面以及你能想到的任何应用

Celery的安装

Celery只是一个python包,所以可以通过pip或者easy_install安装

pip install celery
easy_install install celery

除此之外还需要安装broker的系统,我使用的是redis,除了安装redis以外还需要安装celery-with-redis
pip install celery-with-redis
使用其他类型的broker请参见: 官方文档

Celery的初步使用

启动celery之前先架设好broker服务,安装好redis后以默认方式启动就可以了。
连接方式为:redis://localhost:6379/0

接下来编写任务脚本tasks.py,这个脚本在worker部分和任务分发部分都需要用到:

from celery import Celery

celery = Celery('tasks', broker='redis://localhost:6379/0')

@celery.task
def add(x, y):
    return x + y

执行命令启动worker进行:

#这个命令要在tasks.py文件目录运行,命令表示以worker模式启动一个名为tasks的APP
#worker的名称是test-worker1,一台服务器上可以启动多个worker,只要名称不同,
#启动好的worker会自动根据tasks.py的信息注册到broker服务中,等待分发任务。

celery -A tasks worker --loglevel=info --hostname=test-worker1

执行任务,使用delay()放,如下:

>>> from tasks import add
>>> add.delay(4, 4)

也可以使用apply_async()方法,把结果存储在类似broker的backend系统中,可以和broker在同一个服务中,
更改tasks.py中的实例化celery一行,加入backend参数:
celery = Celery('tasks', broker='redis://localhost:6379/0', backend='redis://localhost:6379/0')

重新执行任务,使用apply_async把结果存储下来,在需要的时候调用get()进行获取,如下:

>>> from tasks import add
>>> result = add.apply_async(4, 4)
>>> result.get()

Celery配置

Celery有很多全局变量,不配置的情况下取默认值,当我们需要配置的时候可以把所有的参数写到一个py文件中然后在
任务文件中进行加载,也可以直接用一个类写到任务文件中,还可以直接对celery类的conf对象直接进行update操作:

方法1,直接加载py文件:
celeryconfig.py:

BROKER_URL = 'amqp://'
CELERY_RESULT_BACKEND = 'amqp://'
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_TIMEZONE = 'Europe/Oslo'
CELERY_ENABLE_UTC = True

from celery import Celery

celery = Celery()
celery.config_from_object('celeryconfig')

方法2,直接对conf进行update:
from celery import Celery

celery = Celery()
celery.conf.update(
CELERY_TASK_SERIALIZER='json',
CELERY_RESULT_SERIALIZER='json',
CELERY_TIMEZONE='Europe/Oslo',
CELERY_ENABLE_UTC=True,
)

or

celery.conf.CELERY_TASK_SERIALIZER = 'json'

方法3,直接加载类或对象:
from celery import Celery

celery = Celery()

class Config:
    CELERY_ENABLE_UTC = True
    CELERY_TIMEZONE = 'Europe/London'

celery.config_from_object(Config)

Celery任务分发控制

在celery里面任务分发控制叫task routing即任务路由

celery的分发控制使用比较简单,但是高级功能比较复杂,我还不能完全理解,就介绍一下最基础的任务路由方法。

在worker进程启动的时候可以使用参数-Q指定当前worker所能接受的队列消息:

celery -A tasks.tasks worker --loglevel=info --hostname=testq-worker -Q 'testq'

然后在任务分发的过程中,调用apply_async或者delay方法中指定queue参数,当queue与worker的-Q相匹配时任务
就可以被分发到相应的worker进程中:

>>> from tasks import add
>>> result = add.apply_async(4, 4, queue='testq')
>>> result.get()

更高级的使用方法请大家研究官网的文档:
docs-routing

Celery的管理

celery的管理有几种方式,比较直观的有一个叫flower的webui,可以提供任务查询,worker的生命管理以及路由管理,可以在界面上
进行实时的路由key添加(就是在worker启动时-Q参数指定的值)

使用方式为:

pip install flower
celery flower --port=5555 --broker=redis://localhost:6379/0

访问http://flower-server:5555

还有一种对任务进行实时监控的方式为celery本身提供的events的功能,启动方式为:

celery events --broker=redis://localhost:6379/0

结束语

celery还有很多功能没来得及研究,我准备把celery应用于服务器管理中一些任务的执行,来代替linux的crontab和一些手工操作,提升更强的灵活性以及更加直观

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容

  • Celery 是一个简单、灵活且可靠的,处理大量消息的分布式系统,它是一个专注于实时处理的任务队列, 同时也支持任...
    与蟒唯舞阅读 3,229评论 1 2
  • 1.定义: Celery是一个异步的任务队列(也叫做分布式任务队列) 2.工作结构 Celery分为3个部...
    四号公园_2016阅读 28,701评论 5 60
  • 在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式。 生产者消费者模式 在实际的软件开发过程中,...
    c2db9ba35639阅读 3,517评论 0 8
  • 创建产品目录模型(models) image = models.ImageField(upload_to='pro...
    lijun_m阅读 891评论 0 0
  • 前言 本系列文章计划分三个章节进行讲述,分别是理论篇、基础篇和实战篇。理论篇主要为构建分布式爬虫而储备的理论知识,...
    resolvewang阅读 14,312评论 9 54