精进消息中间件原理系列(一):之消息堆积

消息堆积

[TOC]

一、消息堆积主要原因

消息堆积主要原因:

1、生产者的生产消息速度>>消费者的处理消息速度,速度不匹配从引起的堆积;(消费者活着但是处理慢)

2、消费者实例IO阻塞严重或者挂机;(消费者宕机等)

3、消费者故障期间消息的堆积。(堆积累加)

单从增加消费者数是远远不够。之所以要处理消息堆积,是为了防止消息堆积所引起MQ的异常,所以在所有MQ的业务场景,消息如果是重要的,不容丢弃时,需要有备选方案,可以采用数据转移,增加中间缓冲技术。

二、不同消息中间件面对消息堆积的能力理解

2.1 RocketMQ消息堆积

RocketMQ在介绍消息堆积能力时,介绍如下:

除了异步解耦功能,消息队列 RocketMQ 版还有挡住前端数据洪峰的重要功能,以此保证后端系统的稳定性。这要求消息队列 RocketMQ 版具有一定的消息堆积能力。消息队列 RocketMQ 版能支持 10 亿级别的消息堆积,不会因为消息堆积导致性能明显下降。

---阿里云官网 如何处理消息堆积?

2.2 RabbitMQ消息堆积

而RabbitMQ在介绍优缺点时,消息堆积作为缺点之一:

RabbitMQ 对消息堆积的支持并不好,在它的设计理念里面,消息队列是一个管道,大量的消息积压是一种不正常的情况,应当尽量去避免。当大量消息积压的时候,会导致 RabbitMQ 的性能急剧下降

延伸一:为什么说RabbitMQ,对消息堆积的支持并不好?

image.png

2.3 从存储模型来理解

关于消息队列对于消息堆积的堆积能力,还需要从消息队列的存储模型来分析:

  • 1、 RabbitMQ:内存、磁盘都保存,消息保存到内存中,通过镜像队列保证HA,通过磁盘存储保证持久化。但由于内存队列中需要保存所有完整的消息本地,因此当消息堆积太多时,会使得内存空间不可用,严重可能内存溢出,服务宕机。

​ -----即 内存、磁盘,支持少量堆积

  • 2、 RocketMQ:消息持久化保存到磁盘中,且消费队列本身不保存消息本地,保存消息磁盘索引,通过FileChannel的MMAP机制实现内存映射,处理消息时能达到基本和内存相同的效率。设置同步复制和同步刷盘即可保存消息不丢失。

​ -----即 磁盘+内存映射技术,支持大量堆积。【磁盘空间还是足够富裕的】

  • 3、 Kafka:同RocketMQ。

附:RocketMQ存储模型图如下:

image.png

三、如何处理消息堆积

如何处理消息堆积呢?可以从两个当面考虑:

  • 如何通过优化代码来避免消息堆积
  • 消息已经堆积了,线上如何快速处理

3.1 如何预防消息堆积

在消息的收发两端,我们的业务代码怎么和消息队列配合,达到一个最佳的性能。

1、发送端性能优化

从消息堆积若干原因来看,消息堆积的原因主要在消费端处理上,本身生产者端应该遵循的原则应该是尽可能快的将消息发送到Broker中去,因此发送端除了业务处理时批量发送暂无好的手段优化,而且并不是所有的业务处理都支持批量发送和批量接收处理。

发送端业务代码的处理性能,实际上和消息队列的关系不大,因为一般发送端都是先执行自己的业务逻辑,最后再发送消息。如果说,你的代码发送消息的性能上不去,你需要优先检查一下,是不是发消息之前的业务逻辑耗时太多导致的。

  • 批量发送是发送端预防消息堆积的方式之一。

2、消费端性能优化

在设计系统的时候,一定要保证消费端的消费性能要高于生产端的发送性能,这样的系统才能健康的持续运行

  • 方式1 增加单个消费者处理能力

    增加单个消费者的处理能力这块没有绝对的办法,只能尽可能的优化消息处理业务逻辑的能力,减少不必要的非业务相关处理时间消耗;如果消息处理业务已经优化到无法再优化了,那只能通过方式2水平扩展消费者个数来优化。

  • 注意:部分同学采用在业务处理OnMessage时,先将消息保存到内存队列中,再开启线程池并发处理内存队列缓存消息这种方式(即通过内存队列增加一个异步环节)-----这种方式存在丢消息的风险,如果消费节点宕机,内存队列中的消息直接丢失。慎用这种方式。

  • 方式2 水平扩容消费者个数

消费端的性能优化除了优化消费业务逻辑以外,也可以通过水平扩容,增加消费端的并发数来提升总体的消费性能。

注意:水平扩容是应保证 扩容后消费者个数<=分区或者队列个数

反过来,即如果扩容后消费者个数超过分区或者队列个数后,再扩容已经没有意义。---因为单个消费队列同一时间内只能被一个消费者消费,再多的消费者也没有用。

此时,需要在Broker中同步增加分区或者队列个数,扩容消费者才有意义。

补充:Kafka中叫分区Partition,RocketMQ和RabbitMQ中叫队列Queue

3.2 消息已经堆积,如何快速处理

如果消息已经堆积了,线上如何快速处理。对于系统发生消息积压的情况,需要先解决积压,再分析原因,毕竟保证系统的可用性是首先要解决的问题。

快速解决积压的方法就是通过水平扩容增加 Consumer 的实例数量,以及其他方式如下。

  • 1、消费端扩容;--通用方式
  • 2、服务降级;--快速失败,不一定适用所有业务场景
  • 3、异常监控。--属于运维层面措施

同步文章见同步博客地址

附 参考文章

1、阿里云官网 如何处理消息堆积?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容