编程作业(一)

线性回归(Linear Regression)

简单的Octave/MATLAB函数(Simple Octave/MATLAB function)

将warmUpExercise.m文件中的warmUpExercise()补充完整,使其能够返回一个5*5的单位矩阵。在函数相应位置键入如下代码即可:

A = eye(5);

然后,我们在Octave中的CLI中键入如下命令测试warmUpExercise()是否正确:

% 先用cd命令“前往”warmUpExercise.m所在的文件目录

octave:2> warmUpExercise()

其输出结果为:

ans =

Diagonal Matrix

   1   0   0   0   0
   0   1   0   0   0
   0   0   1   0   0
   0   0   0   1   0
   0   0   0   0   1
单变量线性回归(Linear regression with one variable)

假设你是一家连锁餐厅的CEO,且该连锁餐厅在各个城市开设了连锁店,因此你可以获得收益和城市人口相关的数据。现在希望你借助这些数据来预测在不同地方开设连锁店的收益。

ex1data1.txt文件为本问题的训练集,第一列表示城市人口,第二列为连锁店的利润,其中负值代表连锁店的亏损。在ex1.m文件中已经编写了相关代码将数据导入其中。

data = load('ex1data1.txt');
X = data(:, 1); 
y = data(:, 2);
m = length(y);          % number of training examples

任务一 可视化数据(Plotting the Data)

因此,我们需在plotData.m文件中将plotData()补充完整。

plot(x, y, 'rx', 'MarkerSize', 10);
xlabel('Population');
ylabel('Revenue');

将上述代码键入函数相应的地方,然后在Octave中测试一下。

octave:10> plotData(X, y);

其运行结果为:


在进行后两个任务之前,我们先把要用到的公式全部列一下:

  • 假设函数hθ(x):hθ(x) = θ0 + θ1x
  • 代价函数J:
  • 梯度下降算法:

注:梯度下降算法是同时更新θj


任务二 计算代价函数J(θ)(Computing the cost J(θ))

根据代价函数J(θ)的公式,我们不难写出如下代码:

J = sum((X*theta - y).^2) / (2*m);

好了,我们在Octave中键入如下代码来测试一下吧:

octave:7> X = [ones(m, 1), data(:, 1)];
octave:8> theta = zeros(2, 1);
octave:9> iterations = 1500;
octave:10> alpha = 0.01;
octave:11> J = computeCost(X, y, theta);

其输出结果为:

octave:12> J
J =  32.073

任务三 梯度下降算法(Gradient Descent)

我们可以设置一个临时变量theta_s,将变量theta的值赋值给这个临时变量theta_s,以保证计算完毕后θj同时更新。

在for循环之前,我们先将theta的值赋值给theta_s:

theta_s = theta;

然后再在for循环中添加计算θj的代码:

theta(1) = theta(1) - alpha / m * sum(X * theta_s - y);       
theta(2) = theta(2) - alpha / m * sum((X * theta_s - y) .* X(:,2));
theta_s = theta;

注:我们在使用梯度下降算法时在矩阵X中新增了一列1(使其成为了第一列)。

X = [ones(m, 1), data(:,1)];   % Add a column of ones to x

之所以增加这一列是因为代价函数J中的θ0的系数为1,为了方便矩阵的运算,故添加此列。

我们在Octave中键入如下代码测试一下:

octave:7> X = [ones(m, 1), data(:, 1)];
octave:8> theta = zeros(2, 1);
octave:9> iterations = 1500;
octave:10> alpha = 0.01;
octave:11> J = computeCost(X, y, theta);
octave:12> J
J =  32.073
octave:13> theta = gradientDescent(X, y, theta, alpha, iterations);

其输出结果为:

octave:14> theta
theta =

  -3.6303
   1.1664

任务四 验证梯度下降算法(Debugging)

ex1.m文件中已将代码写好,我们将其键入Octave中观察输出结果:

octave:15> hold on;
octave:16> plot(X(:, 2), X*theta, '-');`

其输出结果为:

任务五 可视化代价函数J(θ)(Visualizing J(�))

该部分代码也在ex1.m文件中写好,我们将其键入Octave中观察输出结果:

octave:18> theta0_vals = linspace(-10, 10, 100);
octave:19> theta1_vals = linspace(-1, 4, 100);
octave:20> J_vals = zeros(length(theta0_vals), length(theta1_vals));
octave:22> for i = 1:length(theta0_vals)
>     for j = 1:length(theta1_vals)
>         t = [theta0_vals(i); theta1_vals(j)];
>         J_vals(i, j) = computeCost(X, y, t);
>     end
> end
octave:23> J_vals = J_vals';
octave:24> figure;
octave:25> surf(theta0_vals, theta1_vals, J_vals);
octave:26> xlabel('\theta_0');
octave:27> ylabel('\theta_1');
octave:28> figure;
octave:29> contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20));
octave:30> xlabel('\theta_0');
octave:31> ylabel('\theta_1');
octave:32> hold on;
octave:33> plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

其输出结果为:

选做题

多元线性回归(Linear regression with multiple variables)

假设你想要出售你的房子,你想知道现在你的房子在房屋交易中可以卖到什么价位。对此,你可以采取收集最近的房屋交易数据,进而构建房屋价格模型的方法。

ex1data2.txt文件中包含了房屋价格模型的训练集,第一列是房屋的大小,第二列是房间的数量,第三列是房屋的交易价格。

任务一 特征归一化(Feature Normalization)

在这个案例中,由于两个特征变量取值范围差异较大(在实际操作过程中,我们为了方便矩阵运算会添加一个值为1的特征变量)。如若直接使用梯度下降算法,其迭代次数较多。因此,我们先将特征归一化,即特征缩放,来让特征变量的取值范围缩小,使得在使用梯度下降算法时能够更快地收敛。

我们先把特征缩放的公式列一下:

其中μn表示某一特征的平均值,sn表示某一特征的标准差(或最大值与最小值间的差,即max-min)。

因此,我们在featureNormalize.m文件中可以照着公式添加如下代码:

mu = mean(X);          % 求均值,返回值为1*2的矩阵
sigma = std(X);        % 求标准差
X_norm = (X - mu) ./ sigma;

任务二 梯度下降(Gradient Descent)

与之前一样,我们先在X矩阵中添加一列1:

X = [ones(m, 1), X];

在此情况下,代价函数可以写成如下向量形式:

因此,我们可以在computeCostMulti.m文件中使用computeCost.m的代码(因为computeCost.m中的代码已经考虑到了多变量的情况),在gradientDescentMulti.m文件中添加如下代码:

theta = theta - alpha / m * X' * (X * theta - y);

任务三 正规方程(Normal Equations)

正规方程的公式为:

因此,我们在normalEqn.m文件中不难写出如下代码:

theta = pinv( X' * X ) * X' * y;

到了这里大家可以submit了,但还有一个附加作业——选择学习率α并预测1650 平方英尺 3 个卧室的房子的价格,我们还没有写。因此,我们现在来完成它。

我们在ex1_multi.m文件中修改学习率α的值来找到一个合适的学习率α。

fprintf('Running gradient descent ...\n');

% Choose some alpha value
alpha = 0.1;
num_iters = 400;

% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);

% Plot the convergence graph
%figure;
%plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
plot(1:numel(J_history), J_history, 'r');
xlabel('Number of iterations');
ylabel('Cost J');

% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');


fprintf('Running gradient descent ...\n');

% Choose some alpha value
alpha = 0.03;
num_iters = 400;

% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);

% Plot the convergence graph
%figure;
%plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
hold on;
plot(1:numel(J_history), J_history, 'g');

% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');



fprintf('Running gradient descent ...\n');

% Choose some alpha value
alpha = 0.01;
num_iters = 400;

% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);

% Plot the convergence graph
%figure;
%plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
hold on;
plot(1:numel(J_history), J_history, 'y');

legend('alpha = 0.1', 'alpha = 0.03', 'alpha = 0.01');


% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');

其输出结果为:

根据此图,我们大概可以认为alpha = 0.1时,其学习率α较为合适。

最后我们通过梯度下降算法(alpha = 0.1)和正规方程法来预测一下房价,其中我们设置price=2000,即每平方英尺的售价为2000美元,其结果如下:

Predicted price of a 1650 sq-ft, 3 br house (using gradient descent):
 $182861695.021679

Predicted price of a 1650 sq-ft, 3 br house (using normal equations):
 $293081.464335

我们发现两种算法预测出的房价相差甚远,考虑到此处n=2,所以我们优先考虑正规方程法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容