dubbo 你该懂的概念

[TOC]

1 为何要使用dubbo

大规模服务化之前,应用可能只是通过RMI或Hessian等工具,简单的暴露和引用远程服务,通过配置服务的URL地址进行调用,通过F5等硬件进行负载均衡。

(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。

此时需要一个服务注册中心,动态的注册和发现服务,使服务的位置透明。并通过在消费方获取服务提供方地址列表,实现软负载均衡和Failover,降低对F5硬件负载均衡器的依赖,也能减少部分成本。

(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。

这时,需要自动画出应用间的依赖关系图,以帮助架构师理清理关系。

(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?

为了解决这些问题,第一步,要将服务现在每天的调用量,响应时间,都统计出来,作为容量规划的参考指标。其次,要可以动态调整权重,在线上,将某台机器的权重一直加大,并在加大的过程中记录响应时间的变化,直到响应时间到达阀值,记录此时的访问量,再以此访问量乘以机器数反推总容量。

2 dubbo实战

关于dubbo项目搭建,实战的例子。网上可以找到很多,这里提供一个我觉得写的比较清晰的,Dubbo与Zookeeper、SpringMVC整合和使用

3 基本概念

节点角色说明

Container: 服务运行容器。
Provider: 暴露服务的服务提供方。
Consumer: 调用远程服务的服务消费方。
Registry: 服务注册与发现的注册中心。
Monitor: 统计服务的调用次调和调用时间的监控中心。

调用关系说明

  1. 服务容器负责启动,加载,运行服务提供者。
  2. 服务提供者在启动时,向注册中心注册自己提供的服务。
  3. 服务消费者在启动时,向注册中心订阅自己所需的服务。
  4. 注册中心返回服务提供者地址列表给消费者,如果有变更,注册中心将基于长连接推送变更数据给消费者。
  5. 服务消费者,从提供者地址列表中,基于软负载均衡算法,选一台提供者进行调用,如果调用失败,再选另一台调用。
  6. 服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心。

负载均衡策略,可选值:random(随机),roundrobin(轮循),leastactive(最少活跃调用)

集群容错模式

可以自行扩展集群容错策略,参见:集群扩展

Failover Cluster

  1. 失败自动切换,当出现失败,重试其它服务器。(缺省)
  2. 通常用于读操作,但重试会带来更长延迟。
  3. 可通过retries="2"来设置重试次数(不含第一次)。

Failfast Cluster

  1. 快速失败,只发起一次调用,失败立即报错。
  2. 通常用于非幂等性的写操作,比如新增记录。

Failsafe Cluster

  1. 失败安全,出现异常时,直接忽略。
  2. 通常用于写入审计日志等操作。

Failback Cluster

  1. 失败自动恢复,后台记录失败请求,定时重发。
  2. 通常用于消息通知操作。

Forking Cluster

  1. 并行调用多个服务器,只要一个成功即返回。
  2. 通常用于实时性要求较高的读操作,但需要浪费更多服务资源。
    可通过forks="2"来设置最大并行数。

Broadcast Cluster

  1. 广播调用所有提供者,逐个调用,任意一台报错则报错。(2.1.0开始支持)
  2. 通常用于通知所有提供者更新缓存或日志等本地资源信息。

重试次数配置如:(failover集群模式生效)

<dubbo:service retries="2" />

或者
<dubbo:reference retries="2" />

或者
<dubbo:reference>
    <dubbo:method name="findFoo" retries="2" />
</dubbo:reference>

集群模式配置


<dubbo:service cluster="failsafe" />
或者
<dubbo:reference cluster="failsafe" />

4 负载均衡

可以自行扩展负载均衡策略,参见:负载均衡扩展

Random LoadBalance

  1. 随机,按权重设置随机概率。
  2. 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

  1. 轮循,按公约后的权重设置轮循比率。
  2. 存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

  1. 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
  2. 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

  1. 一致性Hash,相同参数的请求总是发到同一提供者。
  2. 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
  3. 算法参见:http://en.wikipedia.org/wiki/Consistent_hashing
  4. 缺省只对第一个参数Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />
  5. 缺省用160份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

配置方式:

<dubbo:service interface="..." loadbalance="roundrobin" />

<dubbo:reference interface="..." loadbalance="roundrobin" />

<dubbo:service interface="...">
    <dubbo:method name="..." loadbalance="roundrobin"/>
</dubbo:service>

<dubbo:reference interface="...">
    <dubbo:method name="..." loadbalance="roundrobin"/>
</dubbo:reference>

关于一致性hash,五分钟理解一致性哈希算法(consistent hashing)

更多关于dubbo的信息,查看dubbo官方网站

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容