用Python识别人脸,表情,性别,颜值,人种...

最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘。

基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本。其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等。

安装dlib会花比较长时间,因为依赖包有十个左右,装完了dlib别忘了下载predictor数据文件。
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bunzip2 bunzip2 shape_predictor_68_face_landmarks.dat.bz2
pip install dlib

我在Adrian大神的代码做了一点修改和封装,先定位脸部的方框,box_face画出方框,在此基础上可选调用tag_face_number来标注脸的标号或者draw_face_landmarks来标注特征点,也可以直接调用count_faces来统计脸的个数,mark_all_faces给所有的脸把所有信息都加上。

Code

拿九张模特图来试试,半脸的不行,侧的太厉害不行,其它都能识别出来。

一张图多张脸的也毫无压力

Console

接下来性别和年龄就不好做了,必须通过机器训练数据,还没时间摸透,又想尽快拿到这些标注,于是先走捷径去调face++的API, 注册个账号申请key和secret即可,免费账户有qps限制,且一张照片内最多支持五人识别。官方的代码示例极差,而且还是只支持Python2的, 收先要改写一下。Attribute中有很多数据可以拿,你想的到的想不到的都有,甚至包括颜值,人种等。颜值还算靠谱,范冰冰90分,凤姐49分,人种就难说了,欧美模特分分钟当成Asian.

Code

机器说: 性别女,表情偏悲伤,颜值89分,28岁,亚洲人,基本没笑

{'image_id': 'wPGIyROqltTdjvRX3zopbg==', 'request_id': '1519574701,3113e37e-b000-4440-af08-871831cf1ba8', 'time_used': 355, 'faces': [{'attributes': {'emotion': {'sadness': 93.448, 'neutral': 4.114, 'disgust': 0.002, 'anger': 0.002, 'surprise': 2.414, 'fear': 0.002, 'happiness': 0.018}, 'beauty': {'female_score': 89.348, 'male_score': 88.925}, 'gender': {'value': 'Female'}, 'age': {'value': 28}, 'headpose': {'yaw_angle': 17.526142, 'pitch_angle': 11.047059, 'roll_angle': 19.623343}, 'smile': {'threshold': 30.1, 'value': 28.532}, 'ethnicity': {'value': 'Asian'}}, 'face_rectangle': {'width': 202, 'top': 103, 'left': 69, 'height': 202}, 'face_token': '7be6a72f497ed16cc7883424584052c5'}]}

机器说: 性别男,表情很快乐,颜值52分,61岁,黑人,大笑

{'image_id': 'YZ5wzeVDiAgCN9yIFX44Gw==', 'request_id': '1519574926,31f6d4d8-bdf6-4863-b29a-cf61ff04ffbe', 'time_used': 323, 'faces': [{'attributes': {'emotion': {'sadness': 0.0, 'neutral': 0.0, 'disgust': 0.0, 'anger': 0.0, 'surprise': 0.0, 'fear': 0.0, 'happiness': 99.999}, 'beauty': {'female_score': 62.678, 'male_score': 51.847}, 'gender': {'value': 'Male'}, 'age': {'value': 61}, 'headpose': {'yaw_angle': 2.6326802, 'pitch_angle': 11.909821, 'roll_angle': -11.707241}, 'smile': {'threshold': 30.1, 'value': 99.081}, 'ethnicity': {'value': 'Black'}}, 'face_rectangle': {'width': 208, 'top': 88, 'left': 120, 'height': 208}, 'face_token': '19067cf0f5358312c109a0e70bab62ae'}]}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容