第一次尝试

# 导入 pandas 模块
import pandas as pd   
#pandas是解决数据分析

# 设置直接显示图片
%matplotlib inline
# %为魔法命令。matplotlib为最著名的Python图表绘制扩展库
stock = pd.read_csv('stock.csv', parse_dates=True, index_col='Date')
stock
#运行正常。显示出数据。它就是读取的stock.csv这个文件

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
</tr>
<tr>
<th>2017-06-08</th>
<td>155.25</td>
<td>155.54</td>
<td>154.40</td>
<td>154.99</td>
<td>21250798</td>
</tr>
<tr>
<th>2017-06-09</th>
<td>155.19</td>
<td>155.19</td>
<td>146.02</td>
<td>148.98</td>
<td>64882657</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.74</td>
<td>146.09</td>
<td>142.51</td>
<td>145.42</td>
<td>72307330</td>
</tr>
<tr>
<th>2017-06-13</th>
<td>147.16</td>
<td>147.45</td>
<td>145.15</td>
<td>146.59</td>
<td>34165445</td>
</tr>
<tr>
<th>2017-06-14</th>
<td>147.50</td>
<td>147.50</td>
<td>143.84</td>
<td>145.16</td>
<td>31531232</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.48</td>
<td>142.21</td>
<td>144.29</td>
<td>32165373</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>144.50</td>
<td>142.20</td>
<td>142.27</td>
<td>50361093</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.74</td>
<td>143.66</td>
<td>146.34</td>
<td>32541404</td>
</tr>
<tr>
<th>2017-06-20</th>
<td>146.87</td>
<td>146.87</td>
<td>144.94</td>
<td>145.01</td>
<td>24900073</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.52</td>
<td>146.07</td>
<td>144.61</td>
<td>145.87</td>
<td>21265751</td>
</tr>
<tr>
<th>2017-06-22</th>
<td>145.77</td>
<td>146.70</td>
<td>145.12</td>
<td>145.63</td>
<td>19106294</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>147.16</td>
<td>145.11</td>
<td>146.28</td>
<td>35439389</td>
</tr>
<tr>
<th>2017-06-26</th>
<td>147.17</td>
<td>148.28</td>
<td>145.38</td>
<td>145.82</td>
<td>25692361</td>
</tr>
<tr>
<th>2017-06-27</th>
<td>145.01</td>
<td>146.16</td>
<td>143.62</td>
<td>143.73</td>
<td>24761891</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>146.11</td>
<td>143.16</td>
<td>145.83</td>
<td>22082432</td>
</tr>
<tr>
<th>2017-06-29</th>
<td>144.71</td>
<td>145.13</td>
<td>142.28</td>
<td>143.68</td>
<td>31499368</td>
</tr>
<tr>
<th>2017-06-30</th>
<td>144.45</td>
<td>144.96</td>
<td>143.78</td>
<td>144.02</td>
<td>23024107</td>
</tr>
</tbody>
</table>
</div>

stock.head()
#head是显示头部数据,默认是前五个数据

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
</tr>
</tbody>
</table>
</div>

stock.head(3)
#()里面可以设置你需要查找的数量,比如我需要查找前3个的数据,只需要在()里输入3就可以了

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
</tr>
</tbody>
</table>
</div>

stock.tail()
#tail是显示尾部的数据,默认就是最后5个数据。()也是同上面的一样,输入数字,代表是查找对应最后几个的数据。

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-26</th>
<td>147.17</td>
<td>148.28</td>
<td>145.38</td>
<td>145.82</td>
<td>25692361</td>
</tr>
<tr>
<th>2017-06-27</th>
<td>145.01</td>
<td>146.16</td>
<td>143.62</td>
<td>143.73</td>
<td>24761891</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>146.11</td>
<td>143.16</td>
<td>145.83</td>
<td>22082432</td>
</tr>
<tr>
<th>2017-06-29</th>
<td>144.71</td>
<td>145.13</td>
<td>142.28</td>
<td>143.68</td>
<td>31499368</td>
</tr>
<tr>
<th>2017-06-30</th>
<td>144.45</td>
<td>144.96</td>
<td>143.78</td>
<td>144.02</td>
<td>23024107</td>
</tr>
</tbody>
</table>
</div>

stock.shape
#shape表示数据的形状,行和列。本数据就是22行,5列
(22, 5)
stock.columns
#我的理解就是显示文件列的数据标题。
Index(['Open', 'High', 'Low', 'Close', 'Volume'], dtype='object')
stock.index
#我的理解就是显示数据行的标题
DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-05', '2017-06-06',
               '2017-06-07', '2017-06-08', '2017-06-09', '2017-06-12',
               '2017-06-13', '2017-06-14', '2017-06-15', '2017-06-16',
               '2017-06-19', '2017-06-20', '2017-06-21', '2017-06-22',
               '2017-06-23', '2017-06-26', '2017-06-27', '2017-06-28',
               '2017-06-29', '2017-06-30'],
              dtype='datetime64[ns]', name='Date', freq=None)
stock.info()
#我的理解就是像查看文件属性是一样的
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 22 entries, 2017-06-01 to 2017-06-30
Data columns (total 5 columns):
Open      22 non-null float64
High      22 non-null float64
Low       22 non-null float64
Close     22 non-null float64
Volume    22 non-null int64
dtypes: float64(4), int64(1)
memory usage: 1.0 KB
stock.info(10)
#后面的()有何意义呢?
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 22 entries, 2017-06-01 to 2017-06-30
Data columns (total 5 columns):
Open      22 non-null float64
High      22 non-null float64
Low       22 non-null float64
Close     22 non-null float64
Volume    22 non-null int64
dtypes: float64(4), int64(1)
memory usage: 1.0 KB
stock.describe()

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<th>count</th>
<td>22.000000</td>
<td>22.000000</td>
<td>22.000000</td>
<td>22.000000</td>
<td>2.200000e+01</td>
</tr>
<tr>
<th>mean</th>
<td>148.215000</td>
<td>149.088636</td>
<td>146.582727</td>
<td>147.831364</td>
<td>3.109900e+07</td>
</tr>
<tr>
<th>std</th>
<td>4.450871</td>
<td>4.337027</td>
<td>4.507623</td>
<td>4.434315</td>
<td>1.416738e+07</td>
</tr>
<tr>
<th>min</th>
<td>143.320000</td>
<td>144.480000</td>
<td>142.200000</td>
<td>142.270000</td>
<td>1.640409e+07</td>
</tr>
<tr>
<th>25%</th>
<td>144.785000</td>
<td>146.095000</td>
<td>143.630000</td>
<td>145.047500</td>
<td>2.231785e+07</td>
</tr>
<tr>
<th>50%</th>
<td>146.320000</td>
<td>147.015000</td>
<td>145.025000</td>
<td>145.850000</td>
<td>2.615864e+07</td>
</tr>
<tr>
<th>75%</th>
<td>153.477500</td>
<td>154.170000</td>
<td>150.670000</td>
<td>152.130000</td>
<td>3.244740e+07</td>
</tr>
<tr>
<th>max</th>
<td>155.250000</td>
<td>155.980000</td>
<td>154.480000</td>
<td>155.450000</td>
<td>7.230733e+07</td>
</tr>
</tbody>
</table>
</div>

stock.plot()
#绘图,折线图

<matplotlib.axes._subplots.AxesSubplot at 0x9357400>
stock.plot(y='Open')
#()里设置要显示的折线图数据
<matplotlib.axes._subplots.AxesSubplot at 0x44bc9e8>
stock['Close']
#使用[]可以进行数据的索引。搜索某一项的数据
Date
2017-06-01    153.18
2017-06-02    155.45
2017-06-05    153.93
2017-06-06    154.45
2017-06-07    155.37
2017-06-08    154.99
2017-06-09    148.98
2017-06-12    145.42
2017-06-13    146.59
2017-06-14    145.16
2017-06-15    144.29
2017-06-16    142.27
2017-06-19    146.34
2017-06-20    145.01
2017-06-21    145.87
2017-06-22    145.63
2017-06-23    146.28
2017-06-26    145.82
2017-06-27    143.73
2017-06-28    145.83
2017-06-29    143.68
2017-06-30    144.02
Name: Close, dtype: float64
stock['Open']
Date
2017-06-01    153.17
2017-06-02    153.58
2017-06-05    154.34
2017-06-06    153.90
2017-06-07    155.02
2017-06-08    155.25
2017-06-09    155.19
2017-06-12    145.74
2017-06-13    147.16
2017-06-14    147.50
2017-06-15    143.32
2017-06-16    143.78
2017-06-19    143.66
2017-06-20    146.87
2017-06-21    145.52
2017-06-22    145.77
2017-06-23    145.13
2017-06-26    147.17
2017-06-27    145.01
2017-06-28    144.49
2017-06-29    144.71
2017-06-30    144.45
Name: Open, dtype: float64
stock.Close
#不使用中括号也可以索引
Date
2017-06-01    153.18
2017-06-02    155.45
2017-06-05    153.93
2017-06-06    154.45
2017-06-07    155.37
2017-06-08    154.99
2017-06-09    148.98
2017-06-12    145.42
2017-06-13    146.59
2017-06-14    145.16
2017-06-15    144.29
2017-06-16    142.27
2017-06-19    146.34
2017-06-20    145.01
2017-06-21    145.87
2017-06-22    145.63
2017-06-23    146.28
2017-06-26    145.82
2017-06-27    143.73
2017-06-28    145.83
2017-06-29    143.68
2017-06-30    144.02
Name: Close, dtype: float64
stock['Close']['2017-06-01']
#可以精准索引到某一项
153.18000000000001
stock['Close']['2017-06-07']
155.37
stock['Close'][0]
153.18000000000001
stock['Close'][5]
154.99000000000001
stock['Close'][2]
#我的理解是后面的中括号里的数字是表示该数字的个数的下一个数的内容
153.93000000000001
stock[['Close']]
#这个跟前面的stock.['Open']差不多,只是显示出来不一样

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Close</th>
</tr>
<tr>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.18</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>153.93</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>154.45</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.37</td>
</tr>
<tr>
<th>2017-06-08</th>
<td>154.99</td>
</tr>
<tr>
<th>2017-06-09</th>
<td>148.98</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.42</td>
</tr>
<tr>
<th>2017-06-13</th>
<td>146.59</td>
</tr>
<tr>
<th>2017-06-14</th>
<td>145.16</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>144.29</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>142.27</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>146.34</td>
</tr>
<tr>
<th>2017-06-20</th>
<td>145.01</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.87</td>
</tr>
<tr>
<th>2017-06-22</th>
<td>145.63</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>146.28</td>
</tr>
<tr>
<th>2017-06-26</th>
<td>145.82</td>
</tr>
<tr>
<th>2017-06-27</th>
<td>143.73</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>145.83</td>
</tr>
<tr>
<th>2017-06-29</th>
<td>143.68</td>
</tr>
<tr>
<th>2017-06-30</th>
<td>144.02</td>
</tr>
</tbody>
</table>
</div>

stock.Close
Date
2017-06-01    153.18
2017-06-02    155.45
2017-06-05    153.93
2017-06-06    154.45
2017-06-07    155.37
2017-06-08    154.99
2017-06-09    148.98
2017-06-12    145.42
2017-06-13    146.59
2017-06-14    145.16
2017-06-15    144.29
2017-06-16    142.27
2017-06-19    146.34
2017-06-20    145.01
2017-06-21    145.87
2017-06-22    145.63
2017-06-23    146.28
2017-06-26    145.82
2017-06-27    143.73
2017-06-28    145.83
2017-06-29    143.68
2017-06-30    144.02
Name: Close, dtype: float64
stock[['Open','Close']]
#搜索Open和Close这两项

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>Close</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.18</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>153.93</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>154.45</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.37</td>
</tr>
<tr>
<th>2017-06-08</th>
<td>155.25</td>
<td>154.99</td>
</tr>
<tr>
<th>2017-06-09</th>
<td>155.19</td>
<td>148.98</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.74</td>
<td>145.42</td>
</tr>
<tr>
<th>2017-06-13</th>
<td>147.16</td>
<td>146.59</td>
</tr>
<tr>
<th>2017-06-14</th>
<td>147.50</td>
<td>145.16</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.29</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>142.27</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.34</td>
</tr>
<tr>
<th>2017-06-20</th>
<td>146.87</td>
<td>145.01</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.52</td>
<td>145.87</td>
</tr>
<tr>
<th>2017-06-22</th>
<td>145.77</td>
<td>145.63</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>146.28</td>
</tr>
<tr>
<th>2017-06-26</th>
<td>147.17</td>
<td>145.82</td>
</tr>
<tr>
<th>2017-06-27</th>
<td>145.01</td>
<td>143.73</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>145.83</td>
</tr>
<tr>
<th>2017-06-29</th>
<td>144.71</td>
<td>143.68</td>
</tr>
<tr>
<th>2017-06-30</th>
<td>144.45</td>
<td>144.02</td>
</tr>
</tbody>
</table>
</div>

stock.loc['2017-06-01', 'Close']
153.18000000000001
stock.loc[:, 'Close']
Date
2017-06-01    153.18
2017-06-02    155.45
2017-06-05    153.93
2017-06-06    154.45
2017-06-07    155.37
2017-06-08    154.99
2017-06-09    148.98
2017-06-12    145.42
2017-06-13    146.59
2017-06-14    145.16
2017-06-15    144.29
2017-06-16    142.27
2017-06-19    146.34
2017-06-20    145.01
2017-06-21    145.87
2017-06-22    145.63
2017-06-23    146.28
2017-06-26    145.82
2017-06-27    143.73
2017-06-28    145.83
2017-06-29    143.68
2017-06-30    144.02
Name: Close, dtype: float64

stock.loc[:,'Open']
#跟上面使用中括号是一样的。
Date
2017-06-01    153.17
2017-06-02    153.58
2017-06-05    154.34
2017-06-06    153.90
2017-06-07    155.02
2017-06-08    155.25
2017-06-09    155.19
2017-06-12    145.74
2017-06-13    147.16
2017-06-14    147.50
2017-06-15    143.32
2017-06-16    143.78
2017-06-19    143.66
2017-06-20    146.87
2017-06-21    145.52
2017-06-22    145.77
2017-06-23    145.13
2017-06-26    147.17
2017-06-27    145.01
2017-06-28    144.49
2017-06-29    144.71
2017-06-30    144.45
Name: Open, dtype: float64
stock.loc['2017-06-01':'2017-06-05', 'Close']
#可以搜索某一个时间段的数据
Date
2017-06-01    153.18
2017-06-02    155.45
2017-06-05    153.93
Name: Close, dtype: float64
stock.loc['2017-06-06':'2017-06-21', 'Close']
Date
2017-06-06    154.45
2017-06-07    155.37
2017-06-08    154.99
2017-06-09    148.98
2017-06-12    145.42
2017-06-13    146.59
2017-06-14    145.16
2017-06-15    144.29
2017-06-16    142.27
2017-06-19    146.34
2017-06-20    145.01
2017-06-21    145.87
Name: Close, dtype: float64
stock.loc['2017-06-01':'2017-06-05', 'Open':'Close']

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
</tr>
</tbody>
</table>
</div>

stock.loc['2017-06-01':'2017-06-05', ['Open', 'Close']]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>Close</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.18</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>153.93</td>
</tr>
</tbody>
</table>
</div>

#    :表示的是从一项到另外一项里的所有内容。  ,表示这两项里的内容
stock.loc['2017-06-01':'2017-06-05', ['Open', 'Close','High']]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>Close</th>
<th>High</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.18</td>
<td>153.33</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>153.93</td>
<td>154.45</td>
</tr>
</tbody>
</table>
</div>

stock.iloc[0,3]
#没懂
153.18000000000001
stock.iloc[0:2, 0:3]
#这个应该是查找数据的前2行,前3列

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
</tr>
</tbody>
</table>
</div>

stock.iloc[0:5, 0:4]
#对了就是的

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
</tr>
</tbody>
</table>
</div>


stock.iloc[0:2, :]
#这个是表示前2行,后面没有数字,则表示全部列吧

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
</tbody>
</table>
</div>

stock.Volume > 5e7
Date
2017-06-01    False
2017-06-02    False
2017-06-05    False
2017-06-06    False
2017-06-07    False
2017-06-08    False
2017-06-09     True
2017-06-12     True
2017-06-13    False
2017-06-14    False
2017-06-15    False
2017-06-16     True
2017-06-19    False
2017-06-20    False
2017-06-21    False
2017-06-22    False
2017-06-23    False
2017-06-26    False
2017-06-27    False
2017-06-28    False
2017-06-29    False
2017-06-30    False
Name: Volume, dtype: bool
stock.Open > 5e7
#5e7是表示5千万?
Date
2017-06-01    False
2017-06-02    False
2017-06-05    False
2017-06-06    False
2017-06-07    False
2017-06-08    False
2017-06-09    False
2017-06-12    False
2017-06-13    False
2017-06-14    False
2017-06-15    False
2017-06-16    False
2017-06-19    False
2017-06-20    False
2017-06-21    False
2017-06-22    False
2017-06-23    False
2017-06-26    False
2017-06-27    False
2017-06-28    False
2017-06-29    False
2017-06-30    False
Name: Open, dtype: bool
stock[stock.Volume > 5e7]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-09</th>
<td>155.19</td>
<td>155.19</td>
<td>146.02</td>
<td>148.98</td>
<td>64882657</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.74</td>
<td>146.09</td>
<td>142.51</td>
<td>145.42</td>
<td>72307330</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>144.50</td>
<td>142.20</td>
<td>142.27</td>
<td>50361093</td>
</tr>
</tbody>
</table>
</div>

stock[stock.Volume < 5e7]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
</tr>
<tr>
<th>2017-06-08</th>
<td>155.25</td>
<td>155.54</td>
<td>154.40</td>
<td>154.99</td>
<td>21250798</td>
</tr>
<tr>
<th>2017-06-13</th>
<td>147.16</td>
<td>147.45</td>
<td>145.15</td>
<td>146.59</td>
<td>34165445</td>
</tr>
<tr>
<th>2017-06-14</th>
<td>147.50</td>
<td>147.50</td>
<td>143.84</td>
<td>145.16</td>
<td>31531232</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.48</td>
<td>142.21</td>
<td>144.29</td>
<td>32165373</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.74</td>
<td>143.66</td>
<td>146.34</td>
<td>32541404</td>
</tr>
<tr>
<th>2017-06-20</th>
<td>146.87</td>
<td>146.87</td>
<td>144.94</td>
<td>145.01</td>
<td>24900073</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.52</td>
<td>146.07</td>
<td>144.61</td>
<td>145.87</td>
<td>21265751</td>
</tr>
<tr>
<th>2017-06-22</th>
<td>145.77</td>
<td>146.70</td>
<td>145.12</td>
<td>145.63</td>
<td>19106294</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>147.16</td>
<td>145.11</td>
<td>146.28</td>
<td>35439389</td>
</tr>
<tr>
<th>2017-06-26</th>
<td>147.17</td>
<td>148.28</td>
<td>145.38</td>
<td>145.82</td>
<td>25692361</td>
</tr>
<tr>
<th>2017-06-27</th>
<td>145.01</td>
<td>146.16</td>
<td>143.62</td>
<td>143.73</td>
<td>24761891</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>146.11</td>
<td>143.16</td>
<td>145.83</td>
<td>22082432</td>
</tr>
<tr>
<th>2017-06-29</th>
<td>144.71</td>
<td>145.13</td>
<td>142.28</td>
<td>143.68</td>
<td>31499368</td>
</tr>
<tr>
<th>2017-06-30</th>
<td>144.45</td>
<td>144.96</td>
<td>143.78</td>
<td>144.02</td>
<td>23024107</td>
</tr>
</tbody>
</table>
</div>

stock[stock.Volume> 5e7]
#加中括号应该是精确显示大于5千万的所有数据吧

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-09</th>
<td>155.19</td>
<td>155.19</td>
<td>146.02</td>
<td>148.98</td>
<td>64882657</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.74</td>
<td>146.09</td>
<td>142.51</td>
<td>145.42</td>
<td>72307330</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>144.50</td>
<td>142.20</td>
<td>142.27</td>
<td>50361093</td>
</tr>
</tbody>
</table>
</div>

stock.Open>5e7
Date
2017-06-01    False
2017-06-02    False
2017-06-05    False
2017-06-06    False
2017-06-07    False
2017-06-08    False
2017-06-09    False
2017-06-12    False
2017-06-13    False
2017-06-14    False
2017-06-15    False
2017-06-16    False
2017-06-19    False
2017-06-20    False
2017-06-21    False
2017-06-22    False
2017-06-23    False
2017-06-26    False
2017-06-27    False
2017-06-28    False
2017-06-29    False
2017-06-30    False
Name: Open, dtype: bool
stock[stock.Close > stock.Open]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.48</td>
<td>142.21</td>
<td>144.29</td>
<td>32165373</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.74</td>
<td>143.66</td>
<td>146.34</td>
<td>32541404</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.52</td>
<td>146.07</td>
<td>144.61</td>
<td>145.87</td>
<td>21265751</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>147.16</td>
<td>145.11</td>
<td>146.28</td>
<td>35439389</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>146.11</td>
<td>143.16</td>
<td>145.83</td>
<td>22082432</td>
</tr>
</tbody>
</table>
</div>

stock[(stock.Close > stock.Open) & (stock.Volume > 3e7)]
#没懂

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.48</td>
<td>142.21</td>
<td>144.29</td>
<td>32165373</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.74</td>
<td>143.66</td>
<td>146.34</td>
<td>32541404</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>147.16</td>
<td>145.11</td>
<td>146.28</td>
<td>35439389</td>
</tr>
</tbody>
</table>
</div>

stock[(stock.Close > stock.Open) | (stock.Volume > 5e7)]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
</tr>
<tr>
<th>2017-06-09</th>
<td>155.19</td>
<td>155.19</td>
<td>146.02</td>
<td>148.98</td>
<td>64882657</td>
</tr>
<tr>
<th>2017-06-12</th>
<td>145.74</td>
<td>146.09</td>
<td>142.51</td>
<td>145.42</td>
<td>72307330</td>
</tr>
<tr>
<th>2017-06-15</th>
<td>143.32</td>
<td>144.48</td>
<td>142.21</td>
<td>144.29</td>
<td>32165373</td>
</tr>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>144.50</td>
<td>142.20</td>
<td>142.27</td>
<td>50361093</td>
</tr>
<tr>
<th>2017-06-19</th>
<td>143.66</td>
<td>146.74</td>
<td>143.66</td>
<td>146.34</td>
<td>32541404</td>
</tr>
<tr>
<th>2017-06-21</th>
<td>145.52</td>
<td>146.07</td>
<td>144.61</td>
<td>145.87</td>
<td>21265751</td>
</tr>
<tr>
<th>2017-06-23</th>
<td>145.13</td>
<td>147.16</td>
<td>145.11</td>
<td>146.28</td>
<td>35439389</td>
</tr>
<tr>
<th>2017-06-28</th>
<td>144.49</td>
<td>146.11</td>
<td>143.16</td>
<td>145.83</td>
<td>22082432</td>
</tr>
</tbody>
</table>
</div>

stock[(stock.Close > stock.Open) | (stock.Volume > 5e7)|(stock.Low)>5e7]
#自己弄了一个,感觉没对

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
</tbody>
</table>
</div>

stock['fluctuation'] = stock['High'] - stock['Low']
stock.head()
#波动

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
<th>fluctuation</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
<td>1.11</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
<td>2.56</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
<td>0.99</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
<td>2.03</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
<td>1.50</td>
</tr>
</tbody>
</table>
</div>

stock['Close'].shift(1)
#没懂
Date
2017-06-01       NaN
2017-06-02    153.18
2017-06-05    155.45
2017-06-06    153.93
2017-06-07    154.45
2017-06-08    155.37
2017-06-09    154.99
2017-06-12    148.98
2017-06-13    145.42
2017-06-14    146.59
2017-06-15    145.16
2017-06-16    144.29
2017-06-19    142.27
2017-06-20    146.34
2017-06-21    145.01
2017-06-22    145.87
2017-06-23    145.63
2017-06-26    146.28
2017-06-27    145.82
2017-06-28    143.73
2017-06-29    145.83
2017-06-30    143.68
Name: Close, dtype: float64
stock['Change'] = stock['Close'] - stock['Close'].shift(1)
stock.head()

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
<th>fluctuation</th>
<th>Change</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
<td>1.11</td>
<td>NaN</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
<td>2.56</td>
<td>2.27</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
<td>0.99</td>
<td>-1.52</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
<td>2.03</td>
<td>0.52</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
<td>1.50</td>
<td>0.92</td>
</tr>
</tbody>
</table>
</div>

stock['Change'] = stock['Close'] - stock['Close'].shift(2)
stock.head()
#没懂

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
<th>fluctuation</th>
<th>Change</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-01</th>
<td>153.17</td>
<td>153.33</td>
<td>152.22</td>
<td>153.18</td>
<td>16404088</td>
<td>1.11</td>
<td>NaN</td>
</tr>
<tr>
<th>2017-06-02</th>
<td>153.58</td>
<td>155.45</td>
<td>152.89</td>
<td>155.45</td>
<td>27770715</td>
<td>2.56</td>
<td>NaN</td>
</tr>
<tr>
<th>2017-06-05</th>
<td>154.34</td>
<td>154.45</td>
<td>153.46</td>
<td>153.93</td>
<td>25331662</td>
<td>0.99</td>
<td>0.75</td>
</tr>
<tr>
<th>2017-06-06</th>
<td>153.90</td>
<td>155.81</td>
<td>153.78</td>
<td>154.45</td>
<td>26624926</td>
<td>2.03</td>
<td>-1.00</td>
</tr>
<tr>
<th>2017-06-07</th>
<td>155.02</td>
<td>155.98</td>
<td>154.48</td>
<td>155.37</td>
<td>21069647</td>
<td>1.50</td>
<td>1.44</td>
</tr>
</tbody>
</table>
</div>

#第一题:2017年6月22日当天的收盘价是多少?
stock['Close']['2017-06-22']
145.63
#第二题: 成交量超过7千万的是哪一天?
stock.[stock.Volume>5e7]
  File "<ipython-input-62-699eabb80231>", line 1
    stock.[stock.Volume>5e7]
          ^
SyntaxError: invalid syntax
stock.Volume>7e7
Date
2017-06-01    False
2017-06-02    False
2017-06-05    False
2017-06-06    False
2017-06-07    False
2017-06-08    False
2017-06-09    False
2017-06-12     True
2017-06-13    False
2017-06-14    False
2017-06-15    False
2017-06-16    False
2017-06-19    False
2017-06-20    False
2017-06-21    False
2017-06-22    False
2017-06-23    False
2017-06-26    False
2017-06-27    False
2017-06-28    False
2017-06-29    False
2017-06-30    False
Name: Volume, dtype: bool
#第三题:在2017年6月28日,收盘价减去开盘价是多少?
stock['2017-06-28']['Close'-'Open']
#没做出来
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2392             try:
-> 2393                 return self._engine.get_loc(key)
   2394             except KeyError:


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5085)()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20405)()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20359)()


KeyError: '2017-06-28'


During handling of the above exception, another exception occurred:


KeyError                                  Traceback (most recent call last)

<ipython-input-72-cd81ee331a30> in <module>()
----> 1 stock['2017-06-28']['Close'-'Open']


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2060             return self._getitem_multilevel(key)
   2061         else:
-> 2062             return self._getitem_column(key)
   2063 
   2064     def _getitem_column(self, key):


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in _getitem_column(self, key)
   2067         # get column
   2068         if self.columns.is_unique:
-> 2069             return self._get_item_cache(key)
   2070 
   2071         # duplicate columns & possible reduce dimensionality


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in _get_item_cache(self, item)
   1532         res = cache.get(item)
   1533         if res is None:
-> 1534             values = self._data.get(item)
   1535             res = self._box_item_values(item, values)
   1536             cache[item] = res


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals.py in get(self, item, fastpath)
   3588 
   3589             if not isnull(item):
-> 3590                 loc = self.items.get_loc(item)
   3591             else:
   3592                 indexer = np.arange(len(self.items))[isnull(self.items)]


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2393                 return self._engine.get_loc(key)
   2394             except KeyError:
-> 2395                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   2396 
   2397         indexer = self.get_indexer([key], method=method, tolerance=tolerance)


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5085)()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20405)()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20359)()


KeyError: '2017-06-28'
#第四题: 开盘价低于144并且成交量大于5千万那一天的收盘价是多少?
stock[(stock.Open<144)&(stock.Volume>5e7)]

<div>
<style>
.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}

</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
<th>fluctuation</th>
<th>Change</th>
</tr>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>2017-06-16</th>
<td>143.78</td>
<td>144.5</td>
<td>142.2</td>
<td>142.27</td>
<td>50361093</td>
<td>2.3</td>
<td>-2.89</td>
</tr>
</tbody>
</table>
</div>

#第五题: 课程中计算的涨跌幅change的最大值是多少?
stock.change
---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

<ipython-input-86-499bb8ff3134> in <module>()
----> 1 stock.change.max()


C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
   2968             if name in self._info_axis:
   2969                 return self[name]
-> 2970             return object.__getattribute__(self, name)
   2971 
   2972     def __setattr__(self, name, value):


AttributeError: 'DataFrame' object has no attribute 'change'
stock['Change'] =['stock.Open':'stock.Volume'>max]
#没做来
  File "<ipython-input-89-aa7cc373d074>", line 1
    stock['Change'] =['stock.Open':'stock.Volume'>max]
                                  ^
SyntaxError: invalid syntax
#第一课都走了一遍,还是学到一些东西,但是还是很多东西没有学懂。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容