面向对象编程
面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。
而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。
在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。
三大特点: 继承 封装 多态
1. 类和实例
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
仍以Student类为例,在Python中,定义类是通过class关键字:
class Student(object): # object可加可不加
pass
class后面紧接着是类名,即Student
,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object
类,这是所有类最终都会继承的类。
定义好了Student类,就可以根据Student类创建出Student的实例,创建实例是通过类名+()
实现的:
>>> bart = Student()
>>> bart
<__main__.Student object at 0x10a67a590>
>>> Student
<class '__main__.Student'>
可以自由地给一个实例变量绑定属性,比如,给实例bart
绑定一个name
属性:
>>> bart.name = 'Bart Simpson'
>>> bart.name
'Bart Simpson'
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
注意到__init__
方法的第一个参数永远是self
,表示创建的实例本身,因此,在__init__
方法内部,就可以把各种属性绑定到self
,因为self
就指向创建的实例本身。
有了__init__
方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__
方法匹配的参数,但self
不需要传,Python解释器自己会把实例变量传进去:
>>> bart = Student('Bart Simpson', 59)
>>> bart.name
'Bart Simpson'
>>> bart.score
59
和普通的函数相比,在类中定义的函数只有一点不同,就是第一个参数永远是实例变量self
,并且,调用时,不用传递该参数。除此之外,类的方法和普通函数没有什么区别,所以,你仍然可以用默认参数、可变参数、关键字参数和命名关键字参数。
数据封装
面向对象编程的一个重要特点就是数据封装。在上面的Student
类中,每个实例就拥有各自的name
和score
这些数据。我们可以通过函数来访问这些数据,比如打印一个学生的成绩:
>>> def print_score(std):... print('%s: %s' % (std.name, std.score))...>>> print_score(bart)Bart Simpson: 59
但是,既然Student实例本身就拥有这些数据,要访问这些数据,就没有必要从外面的函数去访问,可以直接在Student类的内部定义访问数据的函数,这样,就把“数据”给封装起来了。这些封装数据的函数是和Student类本身是关联起来的,我们称之为类的方法:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self): # self 必填
print('%s: %s' % (self.name, self.score))
要定义一个方法,除了第一个参数是self
外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self
不用传递,其他参数正常传入:
>>> bart.print_score()
Bart Simpson: 59
这样一来,我们从外部看Student类,就只需要知道,创建实例需要给出name
和score
,而如何打印,都是在Student类的内部定义的,这些数据和逻辑被“封装”起来了,调用很容易,但却不用知道内部实现的细节。
小结
类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同:
>>> bart = Student('Bart Simpson', 59)
>>> lisa = Student('Lisa Simpson', 87)
>>> bart.age = 8
>>> bart.age
8
>>> lisa.age
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'age'
2. 访问限制
在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。
但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的name
、score
属性:
>>> bart = Student('Bart Simpson', 98)
>>> bart.score
98
>>> bart.score = 59
>>> bart.score
59
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print('%s: %s' % (self.__name, self.__score))
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name
和实例变量.__score
了:
>>> bart = Student('Bart Simpson', 98)
>>> bart.__name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'
这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name
和score
怎么办?可以给Student类增加get_name
和get_score
这样的方法:
class Student(object):
...
def get_name(self):
return self.__name
def get_score(self):
return self.__score
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score
方法:
class Student(object):
...
def set_score(self, score):
self.__score = score
你也许会问,原先那种直接通过bart.score = 59
也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object):
...
def set_score(self, score):
if 0 <= score <= 100:
self.__score = score
else:
raise ValueError('bad score')
需要注意的是,在Python中,变量名类似__xxx__
的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__
、__score__
这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
3 继承和多态
在OOP程序设计中,当我们定义一个·class
的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:
class Animal(object):
def run(self):
print('Animal is running...')
当我们需要编写Dog
和Cat
类时,就可以直接从Animal类继承:
class Dog(Animal):
pass
class Cat(Animal):
pass
对于Dog
来说,Anima
l就是它的父类,对于Animal
来说,Dog
就是它的子类。Cat
和Dog
类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,Dog
和Cat
作为它的子类,什么事也没干,就自动拥有了run()
方法:
dog = Dog()
dog.run()
cat = Cat()
cat.run()
运行结果如下:
Animal is running...
Animal is running...
当子类和父类都存在相同的run()
方法时,我们说,子类的run()
覆盖了父类的run()
,在代码运行的时候,总是会调用子类的run()
。这样,我们就获得了继承的另一个好处:多态。
要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str
、list
、dict
没什么两样:
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型
判断一个变量是否是某个类型可以用isinstance()
判断:
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True
看来a、b、c确实对应着list
、Animal
、Dog
这3种类型。
但是等等,试试:
>>> isinstance(c, Animal)
True
看来c
不仅仅是Dog
,c
还是Animal
!
不过仔细想想,这是有道理的,因为Dog
是从Animal
继承下来的,当我们创建了一个Do
g的实例c
时,我们认为c
的数据类型是Dog
没错,但c
同时也是Animal
也没错,Dog
本来就是Animal
的一种!
所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:
>>> b = Animal()
>>> isinstance(b, Dog)
False
Dog
可以看成Animal
,但Animal
不可以看成Dog
。
要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal类型的变量:
def run_twice(animal):
animal.run()
animal.run()
当我们传入Animal
的实例时,run_twice()
就打印出:
>>> run_twice(Animal())
Animal is running...
Animal is running...
当我们传入Dog
的实例时,run_twice()
就打印出:
>>> run_twice(Dog())
Dog is running...
Dog is running...
看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise类型,也从Animal派生:
class Tortoise(Animal):
def run(self):
print('Tortoise is running slowly...')
当我们调用run_twice()
时,传入Tortoise的实例:
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...
你会发现,新增一个Animal的子类,不必对run_twice()
做任何修改,实际上,任何依赖Animal作为参数的函数或者方法都可以不加修改地正常运行,原因就在于[多态]。
多态的好处就是,当我们需要传入Dog
、Cat
、Tortoise
……时,我们只需要接收Animal类型就可以了,因为Dog、Cat、Tortoise……都是Animal类型,然后,按照Animal类型进行操作即可。由于Animal类型有run()
方法,因此,传入的任意类型,只要是Animal类或者子类,就会自动调用实际类型的run()
方法,这就是多态的意思:
对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()
方法,而具体调用的run()
方法是作用在Animal、Dog、Cat还是Tortoise对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()
方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
对扩展开放:允许新增Animal子类;
对修改封闭:不需要修改依赖Animal类型的run_twice()
等函数。
静态语言 vs 动态语言
对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()
方法。
对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()
方法就可以了:
class Timer(object):
def run(self):
print('Start...')
这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。
4. 获取对象信息
当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?
使用type()
首先,我们来判断对象类型,使用type()
函数:
基本类型都可以用type()
判断:
>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>
如果一个变量指向函数或者类,也可以用type()
判断:
>>> type(abs)
<class 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>
但是type()
函数返回的是什么类型呢?它返回对应的Class类型。如果我们要在if语句中判断,就需要比较两个变量的type类型是否相同:
>>> type(123)==type(456)
True
>>> type(123)==int
True
>>> type('abc')==type('123')
True
>>> type('abc')==str
True
>>> type('abc')==type(123)
False
判断基本数据类型可以直接写int
,str
等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True
使用isinstance()
对于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()函数。
我们回顾上次的例子,如果继承关系是:
object -> Animal -> Dog -> Husky
那么,isinstance()
就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()
然后,判断:
>>> isinstance(h, Husky)
True
没有问题,因为h变量指向的就是Husky
对象。
再判断:
>>> isinstance(h, Dog)
True
h虽然自身是Husky
类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()
判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。
使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list
,比如,获得一个str
对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', ...................
类似__xxx__
的属性和方法在Python中都是有特殊用途的,比如__len__
方法返回长度。在Python中,如果你调用len()
函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()
方法,所以,下面的代码是等价的:
>>> len('ABC')
3
>>> 'ABC'.__len__()
3
我们自己写的类,如果也想用len(myObj)
的话,就自己写一个__len__()
方法:
>>> class MyDog(object):
... def __len__(self):
... return 100
...
>>> dog = MyDog()
>>> len(dog)
100
剩下的都是普通属性或方法,比如lower()
返回小写的字符串:
>>> 'ABC'.lower()
'abc'
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
紧接着,可以测试该对象的属性:
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
如果试图获取不存在的属性,会抛出AttributeError
的错误
小结
通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:
sum = obj.x + obj.y
就不要写:
sum = getattr(obj, 'x') + getattr(obj, 'y')
一个正确的用法的例子如下:
def readImage(fp):
if hasattr(fp, 'read'):
return readData(fp)
return None
假设我们希望从文件流fp
中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()
就派上了用场。
请注意,在Python这类动态语言中,根据鸭子类型,有read()
方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()
方法返回的是有效的图像数据,就不影响读取图像的功能。
4 实例属性和类属性
由于Python是动态语言,根据类创建的实例可以任意绑定属性。
给实例绑定属性的方法是通过实例变量,或者通过self
变量:
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')
s.score = 90
但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:
class Student(object):
name = 'Student'
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object):
... name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
从上面的例子可以看出,在编写程序的时候,千万不要把实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。