零知识证明

战争中你被俘了,敌人拷问你情报。你是这么想的:如果我把情报都告诉他们,他们就会认为我没有价值了,就会杀了我省粮食,但如果我死活不说,他们也会认为我没有价值而杀了我。怎样才能做到既让他们确信我知道情报,但又一丁点情报也不泄露呢?
这的确是一个令人纠结的问题,但阿里巴巴想了一个好办法,当强盗向他拷问打开山洞石门的咒语时,他对强盗说:“你们离我一箭之地,用弓箭指着我,你们举起右手我就念咒语打开石门,举起左手我就念咒语关上石门,如果我做不到或逃跑,你们就用弓箭射死我。”
强盗们当然会同意,因为这个方案不仅对他们没有任何损失,而且还能帮助他们搞清楚阿里巴巴到底是否知道咒语这个问题。阿里巴巴也没损失,因为处于一箭之地的强盗听不到他念的咒语,不必担心泄露了秘密,而且他确信自己的咒语有效,也不会发生被射死的杯具。
强盗举起了右手,只见阿里巴巴的嘴动了几下,石门果真打开了,强盗举起了左手,阿里巴巴的嘴动了几下后石门又关上了。强盗还是有点不信,说不准这是巧合呢,他们不断地换着节奏举右手举左手,石门跟着他们的节奏开开关关,最后强盗们想,如果还认为这只是巧合,自己未免是个傻瓜,那还是相信了阿里巴巴吧。
“零知识证明”说的是示证者向验证者表明他知道某种秘密,不仅能使验证者完全确信他的确知道这个秘密,同时还保证一丁点秘密也不泄露给验证者。阿里巴巴的这个方案,就是认证理论“零知识证明”的一个重要协议。
除了被俘后如何靠情报保命这个问题,零知识证明在社会领域中还有着很多应用场合。例如你证明了一个世界级的数学难题,但在发表出来之前,总是要找个泰斗级的数学家审稿吧,于是你将证明过程发给了他,他看懂后却动了歪心思,他把你的稿子压住,把你的证明用自己的名义发表,他名利双收,你郁闷至死,你去告他也没用,因为学术界更相信的是这位泰斗,而不是你这个无名之辈。
这并不是天方夜谭,而是学术界常见的难题,前些年有个博士生告他的泰斗级导师剽窃他的成果,但除了令师生关系恶化外没有任何效果,最后他使出了撒手锏,称他在给导师审阅的论文的关键公式中,故意标错了一个下标,而这会导致整个推导失败。学术委员会一查果真如此,但还是有倾向于泰斗的声音,有人说那是泰斗的笔误,只不过让你发现了而矣,并不能证明那公式就是你推导出来的。
这个博士生故意标错下标,不能说他没有心眼,但他没有把“零知识证明”理论用好,以致于落到这种地步。“零知识证明”早在1986年就被A.Fiat和A.Shamir用数学的方法给出了解决方案,并在同年申请了美国专利,但由于该理论可能被用于军事领域,专利局被军方密令搁置,6个月后,军方命令:“该申请发表后会有害于国家安全......所有美国人的研究未经许可而泄露将会被判刑罚款”。看来军方认为作者肯定是美国人了,但作者实际上是在美国申请专利的以色列人,研究也是在以色列的大学里做的,军方这个命令摆了个大乌龙,虽然两天后撤消了,但已经成为了学术界的笑柄。
这个笑柄也说明了一个问题,即“零知识证明”非常重要。基于数学的推理虽然非常复杂,但思路却很简单,上述的阿里巴巴方案就是其中之一。其它的一些方案,也都是像这样遵循着分割和选择(Cut and Chose)协议的。
例如图论中有个哈米尔顿回路(Hamiltonian Cyclic)问题,说的是多个顶点的全连通图,若有一条通路通过了所有顶点,且每个顶点只通过一次,那这就是哈米尔顿回路。如果顶点较多的话,即使用计算机穷举计算很难找出这条回路,因为通路的可能性真在是太多了。
如果松鼠会贴了一张全连通图(命名为A图)悬赏哈米尔顿回路,而且任命我(奥卡姆剃刀)作为评审官,你幸运的找到了一条,那该怎么办呢,将结果直接发给我吗?千万不要,因为保不齐我会将你的成果让给了我的亲信。那你该怎么办呢?应该这么办:


1、你将A图的顶点搞乱了,并生成一张新图,只是顶点的位置变了,而新图顶点之间的连线关系与A图是完全一致的。这时,新图中每个顶点与A图中每个顶点的对应关系你是清楚的,而且新图中的哈米尔顿回路你也是知道的。
2、你将这张新图发给我,没错,就是仅仅一张新图,上面并没有画着你发现的牛B回路。
3、我收到后,对你提出两个问题中的一个:一是证明新图就是从A图变形过来的,所有顶点和连线的关系完全一致,二是画出新图中的哈米尔顿回路。
4、如果你真的找到了A图的哈米尔顿回路,这两个问题当然都能轻松回答。需要注意的是:你只需要回答第3步的其中一个问题,千万不要两个问题一并回答,否则我就知道你关于A图的哈米尔顿回路了,你就SB了。
5、我还是不相信你,因为有可能你只是将A图变了形,却根本不知道A图的哈米尔顿回路,而我在第3步时恰好要求你证明新图就是从A图变形过来的,你当然能证明。或者有可能你找了个你知道哈米尔顿回路的图,但这张图跟A图一点关系都没有,而我在第3步恰好要求你画出这张图的哈米尔顿回路。
6、我要求你从第1步开始重复这个验证过程,随着次数的增加,第5步那种巧合的可能性就越来越低,如果你多次能回答对第3步中的问题,那我还不相信你已经找到了A图的哈米尔顿回路,那我就是一个傻瓜。
7、为了表明我不是傻瓜,我在松鼠会群博里宣布你找到了A图的哈米尔顿回路,而这时我并没有看到你所画的A图的哈米尔顿回路。
回到你证明了世界级的数学难题的问题,你可以用这种分割和选择协议来进行零知识证明,来保护你的权利。你公开声称你解决了这个数学难题后,验证者会给你出一个其它的题,而能做出这道题的前提条件是已经解决了那个数学难题,否则的话无解,而且这个条件是学术界所公认的,这个题就是所谓的平行问题。不出所料,你靠着已经解开数学难题的基础把这个平行问题做出来了,但验证者还是不信,他又出了一道平行问题,你又做出来了,多次较量后,验证者就确信了你已经解决了那个数学难题,虽然他并没有看到具体的解法。
大家已经看出来了,零知识证明需要示证者和验证者的密切配合,但如果你只是一个数学界的无名之辈,即使你宣称你解决了数学难题,也不会有人跟你配合着玩零知识证明,那你该怎么办呢?



我告诉你一个可以在法庭上都能当作有效证据的招数,你将证明打印好,选择一个最可靠最权威的邮政公司,把它寄给自己,当你收到这个扣着邮戳的包裹后,不要打开,把它放好,然后就可以把证明寄给数学泰斗。如果他用自己的名义发表了,不必着急,等他依靠其影响力把这个证明炒热后再出手,你上法庭控告他,他当然不承认,在法庭上你将那个没开封的包裹拿出来,上面清清楚楚地盖着时间戳,这就证明了你包裹里的证明是发生在那个时间戳之前的,加上之后的你邮给泰斗论文的邮件存根,和泰斗以自己名义发表论文的时间,三者就构成了一个完整的证据链,泰斗灰头土脸名声扫地,而你大获全胜名利双收。




参考文献:《通信网的安全-理论与技术》,王育民等编著,西安电子科技大学出版社,2000.5

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容

  • 最近以太坊启动了“大都会”硬分叉,很重要的一个功能就是整合了ZCash的零知识证明技术zkSNARK。我们一起来看...
    元家昕阅读 36,317评论 11 34
  • 学习区块链过程中突然发现密码学的原理在里面起到了非常关键的作用,这里就谈谈其中最重要的一条密码学原理:零知识证明。...
    多森老师阅读 696评论 0 3
  • 2017年5月31号 星期三 晴 时间过得真快,5月就这么结束了,今天也是亲子日记的又一个10天,没事的时候翻...
    仲蕊蕊妈妈阅读 306评论 0 3
  • 莫伤依旧失落落魄的样子,就像一个飘零的蒲公英,飘舞的绚烂,却身不由己的前行,没有方向,没有目标,只是一直往前不知道...
    雨林木风雪阅读 199评论 0 0
  • 婆婆无女,有两儿,我夫为满儿。 结婚不久,请婆婆公公过来聚餐。丈夫买来大堆菜之后就照例在厨房忙乎去了,我则照例在客...
    田芯蕊阅读 570评论 4 7