tensorflow objection detection model(网络模型加载)

在使用google提供的模型时,可能会报错,那就要我们了解程序加载模型的具体细节。
训练的开始语句是

 python train.py --train_dir='train_dir' --pipeline_config_path='pipeline_config_path'

核心调用的文件就是train.py。在train.py中通过

model_config, train_config, input_config = get_configs_from_pipeline_file()

获取配置信息,其中是调用protobuf进行文件解析。之后分别得到model_config,train_config,input_config(训练的格式)。
之后通过functools.partial函数对model_builder.build函数赋予默认值。通过functools.partial函数对input_reader_builder.build赋予默认值。train_config是在最后训练的时候进行传入。
生成网络模型的代码为:

def build(model_config, is_training):
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
# 获取配置中的模型种类
  meta_architecture = model_config.WhichOneof('model')
#进行具体加载
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))

之后以'faster_rcnn模型为例子,进入_build_faster_rcnn_model

def _build_faster_rcnn_model(frcnn_config, is_training):
#构建一个Faster R-CNN 或者 R-FCN的检测模型。
#如果second_stage_box_predictor的类型是rfcn_box_predictor则为R-FCN模型,否则为Faster R-CNN
#frcnn_config 说明模型的结构
#is_training 模型是否用来进行训练。
  #获取要识别的类数
  num_classes = frcnn_config.num_classes
 #构建图像归一化
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
#构建前端网络结构
  feature_extractor = _build_faster_rcnn_feature_extractor(
      frcnn_config.feature_extractor, is_training)
#是否仅构建RPN层
  first_stage_only = frcnn_config.first_stage_only
#构建Anchor
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)
#带间隔的卷积,其中的间隔多大
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
#卷积神经网络的参数
  first_stage_box_predictor_arg_scope = hyperparams_builder.build(
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
#第一阶段的核大小
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
#rpn的输出深度
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
#第一阶段的最小批次
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
#每一张图片RPN中正样本的数量。
  first_stage_positive_balance_fraction = (
      frcnn_config.first_stage_positive_balance_fraction)
#第一阶段nms得分的阈值
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
#第一阶段nms的IOU的阈值
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
#第一阶段最多传出多少个RPN
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
#第一阶段的定位损失权重
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
#第一阶段的物品损失权重
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight
#输出的rpn的大小(宽高相等)
  initial_crop_size = frcnn_config.initial_crop_size
#在maxpool时的核的大小以及步长
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride
#构建卷积神经网络的超参数
  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
#第二阶段进入的图片的批次
  second_stage_batch_size = frcnn_config.second_stage_batch_size
#第二阶段中图片中bbox的正样本的比例
  second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction
#构建后处理的模型
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
#第二阶段的位置和种类的权重比例
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
#默认不进行困难样本发现
  hard_example_miner = None
#但如果配置文件中有hard_example_miner,则进行困难样本发现
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)
#将配置好的模型放入dict中
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
      'first_stage_only': first_stage_only,
      'first_stage_anchor_generator': first_stage_anchor_generator,
      'first_stage_atrous_rate': first_stage_atrous_rate,
      'first_stage_box_predictor_arg_scope':
      first_stage_box_predictor_arg_scope,
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
      'first_stage_positive_balance_fraction':
      first_stage_positive_balance_fraction,
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
      'second_stage_batch_size': second_stage_batch_size,
      'second_stage_balance_fraction': second_stage_balance_fraction,
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
      'hard_example_miner': hard_example_miner}
#如果第二阶段是rfcn的则使用上面这个,否则使用上面这个
  if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor):
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        **common_kwargs)

之后说明每一个子模型的构建
首先是image_resizer_builder的模型构建

# 构建图片的resize
def build(image_resizer_config):
# 查看类型是否正确
  if not isinstance(image_resizer_config, image_resizer_pb2.ImageResizer):
    raise ValueError('image_resizer_config not of type '
                     'image_resizer_pb2.ImageResizer.')
#查看是否设置了image_resizer_oneof属性,如果有判断是否为keep_aspect_ratio_resizer
  if image_resizer_config.WhichOneof(
      'image_resizer_oneof') == 'keep_aspect_ratio_resizer':
    #如果是则进行保持图片比例的缩放,再使用functools.partial对 preprocessor.resize_to_range给默认值。
    keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer
    if not (keep_aspect_ratio_config.min_dimension
            <= keep_aspect_ratio_config.max_dimension):
      raise ValueError('min_dimension > max_dimension')
    return functools.partial(
        preprocessor.resize_to_range,
        min_dimension=keep_aspect_ratio_config.min_dimension,
        max_dimension=keep_aspect_ratio_config.max_dimension)
#如果有image_resizer_oneof属性,如果有判断是否为fixed_shape_resizer,即归一化到固定大小
  if image_resizer_config.WhichOneof(
      'image_resizer_oneof') == 'fixed_shape_resizer':
#如果有则使用functools.partial对preprocessor.resize_image,给默认值,插值的那种resize
    fixed_shape_resizer_config = image_resizer_config.fixed_shape_resizer
    return functools.partial(preprocessor.resize_image,
                             new_height=fixed_shape_resizer_config.height,
                             new_width=fixed_shape_resizer_config.width)
  raise ValueError('Invalid image resizer option.')

接下来看preprocessor.resize_to_range这个函数

def resize_to_range(image,
                    masks=None,
                    min_dimension=None,
                    max_dimension=None,
                    align_corners=False):
 #该函数是将一个图片resize到给定的大小
#其中,有两种可能:
#1.如果图片可以resize到短边等于给定的值,而长边不超过给定的max_dimension
#2.将长边resize到max_dimension。
  if len(image.get_shape()) != 3:
    raise ValueError('Image should be 3D tensor')

  with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
    if image.get_shape().is_fully_defined():
      new_size = _compute_new_static_size(image, min_dimension,
                                          max_dimension)
    else:
      new_size = _compute_new_dynamic_size(image, min_dimension,
                                           max_dimension)
    new_image = tf.image.resize_images(image, new_size,
                                       align_corners=align_corners)

    result = new_image
    if masks is not None:
      new_masks = tf.expand_dims(masks, 3)
      new_masks = tf.image.resize_nearest_neighbor(new_masks, new_size,
                                                   align_corners=align_corners)
      new_masks = tf.squeeze(new_masks, 3)
      result = [new_image, new_masks]

    return result

resize之后就是构建faster_rcnn_meta_arch,也就是进行_build_faster_rcnn_feature_extractor函数的说明

def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
#获取第一阶段的网络结构,比如:faster_rcnn_resnet101
  feature_type = feature_extractor_config.type
#获取
#first_stage_features_stride只能等于8或者16,否则会报错
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
#判断有没有内置的这个特征提取的网络
  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
# 返回了一个初始化了的特征提取
  return feature_extractor_class(
      is_training, first_stage_features_stride, reuse_weights)

加下来是anchor的构建

def build(anchor_generator_config):
#构建过程二选一,是使用grid_anchor_generator还是ssd_anchor_generator在这里我们看grid_anchor_generator
 if not isinstance(anchor_generator_config,
                   anchor_generator_pb2.AnchorGenerator):
   raise ValueError('anchor_generator_config not of type '
                    'anchor_generator_pb2.AnchorGenerator')
 if anchor_generator_config.WhichOneof(
     'anchor_generator_oneof') == 'grid_anchor_generator':
   grid_anchor_generator_config = anchor_generator_config.grid_anchor_generator
  #使用传入的参数对grid_anchor_generator进行初始化,具体的自行看
   return grid_anchor_generator.GridAnchorGenerator(
       scales=[float(scale) for scale in grid_anchor_generator_config.scales],
       aspect_ratios=[float(aspect_ratio)
                      for aspect_ratio
                      in grid_anchor_generator_config.aspect_ratios],
       base_anchor_size=[grid_anchor_generator_config.height,
                         grid_anchor_generator_config.width],
       anchor_stride=[grid_anchor_generator_config.height_stride,
                      grid_anchor_generator_config.width_stride],
       anchor_offset=[grid_anchor_generator_config.height_offset,
                      grid_anchor_generator_config.width_offset])
 elif anchor_generator_config.WhichOneof(
     'anchor_generator_oneof') == 'ssd_anchor_generator':
   ssd_anchor_generator_config = anchor_generator_config.ssd_anchor_generator
   return multiple_grid_anchor_generator.create_ssd_anchors(
       num_layers=ssd_anchor_generator_config.num_layers,
       min_scale=ssd_anchor_generator_config.min_scale,
       max_scale=ssd_anchor_generator_config.max_scale,
       aspect_ratios=ssd_anchor_generator_config.aspect_ratios,
       reduce_boxes_in_lowest_layer=(ssd_anchor_generator_config
                                     .reduce_boxes_in_lowest_layer))
 else:
   raise ValueError('Empty anchor generator.')

接下来是构建hyperparams_builder.build的那个模块

def build(hyperparams_config, is_training):
#根据给出的配置文件构建tf-slim的arg_scope,
#返回的arg_scope中包含了权重的初始化,归一化,激活函数,BN等信息。
#如果BN没有定义,则不包含BN层。
#BN的参数是否进行训练是基于is_training参数和
#conv_hyperparams_config.batch_norm.train这两个参数。
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')
#如果有batch_norm,则进行BN,
  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
  with slim.arg_scope(
      affected_ops,
      weights_regularizer=_build_regularizer(
          hyperparams_config.regularizer),
      weights_initializer=_build_initializer(
          hyperparams_config.initializer),
      activation_fn=_build_activation_fn(hyperparams_config.activation),
      normalizer_fn=batch_norm,
      normalizer_params=batch_norm_params) as sc:
    return sc

接下来是bbox的预测的构建

def build(argscope_fn, box_predictor_config, is_training, num_classes):
#基于配置文件进行box的预测的配置
#argscope_fn接受两个输入:hyperparams_pb2.Hyperparams proto以及表示是否进行训练
  if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
    raise ValueError('box_predictor_config not of type '
                     'box_predictor_pb2.BoxPredictor.')
#获取配置文件中的box_predictor_oneof对应的参数,这里给出的是rfcn_box_predictor
  box_predictor_oneof = box_predictor_config.WhichOneof('box_predictor_oneof')

  if  box_predictor_oneof == 'convolutional_box_predictor':
    conv_box_predictor = box_predictor_config.convolutional_box_predictor
    conv_hyperparams = argscope_fn(conv_box_predictor.conv_hyperparams,
                                   is_training)
    box_predictor_object = box_predictor.ConvolutionalBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        min_depth=conv_box_predictor.min_depth,
        max_depth=conv_box_predictor.max_depth,
        num_layers_before_predictor=(conv_box_predictor.
                                     num_layers_before_predictor),
        use_dropout=conv_box_predictor.use_dropout,
        dropout_keep_prob=conv_box_predictor.dropout_keep_probability,
        kernel_size=conv_box_predictor.kernel_size,
        box_code_size=conv_box_predictor.box_code_size,
        apply_sigmoid_to_scores=conv_box_predictor.apply_sigmoid_to_scores)
    return box_predictor_object

  if box_predictor_oneof == 'mask_rcnn_box_predictor':
    mask_rcnn_box_predictor = box_predictor_config.mask_rcnn_box_predictor
    fc_hyperparams = argscope_fn(mask_rcnn_box_predictor.fc_hyperparams,
                                 is_training)
    conv_hyperparams = None
    if mask_rcnn_box_predictor.HasField('conv_hyperparams'):
      conv_hyperparams = argscope_fn(mask_rcnn_box_predictor.conv_hyperparams,
                                     is_training)
    box_predictor_object = box_predictor.MaskRCNNBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        fc_hyperparams=fc_hyperparams,
        use_dropout=mask_rcnn_box_predictor.use_dropout,
        dropout_keep_prob=mask_rcnn_box_predictor.dropout_keep_probability,
        box_code_size=mask_rcnn_box_predictor.box_code_size,
        conv_hyperparams=conv_hyperparams,
        predict_instance_masks=mask_rcnn_box_predictor.predict_instance_masks,
        mask_prediction_conv_depth=(mask_rcnn_box_predictor.
                                    mask_prediction_conv_depth),
        predict_keypoints=mask_rcnn_box_predictor.predict_keypoints)
    return box_predictor_object
#如果是rfcn_box_predictor,则进行之后的操作
  if box_predictor_oneof == 'rfcn_box_predictor':
    rfcn_box_predictor = box_predictor_config.rfcn_box_predictor
#进行hyperparams_builder.build。
    conv_hyperparams = argscope_fn(rfcn_box_predictor.conv_hyperparams,
                                   is_training)
# 初始化一个box的预测器,对正样本ROI预测类型以及位置
#用于第二阶段的RFCN的结构
    box_predictor_object = box_predictor.RfcnBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        crop_size=[rfcn_box_predictor.crop_height,
                   rfcn_box_predictor.crop_width],
        num_spatial_bins=[rfcn_box_predictor.num_spatial_bins_height,
                          rfcn_box_predictor.num_spatial_bins_width],
        depth=rfcn_box_predictor.depth,
        box_code_size=rfcn_box_predictor.box_code_size)
    return box_predictor_object
  raise ValueError('Unknown box predictor: {}'.format(box_predictor_oneof))

上面的函数中有hyperparams_builder.build,那么就看看这个

def build(hyperparams_config, is_training):
#其实也是返回一个tf-slim 的arg_scope。
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')

  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
  with slim.arg_scope(
      affected_ops,
      weights_regularizer=_build_regularizer(
          hyperparams_config.regularizer),
      weights_initializer=_build_initializer(
          hyperparams_config.initializer),
      activation_fn=_build_activation_fn(hyperparams_config.activation),
      normalizer_fn=batch_norm,
      normalizer_params=batch_norm_params) as sc:
    return sc

已经获取了box以及预测的类别,之后就是要进行一些后处理,可以看看后处理的构建post_processing_builder.build(frcnn_config.second_stage_post_processing)的具体内容。

def build(post_processing_config):
 #构建可调用的后处理操作,主要之基于配置文件对性nms以及得分排序的操作。
  if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
    raise ValueError('post_processing_config not of type '
                     'post_processing_pb2.Postprocessing.')
#构建nms
  non_max_suppressor_fn = _build_non_max_suppressor(
      post_processing_config.batch_non_max_suppression)
#构建得分排序
  score_converter_fn = _build_score_converter(
      post_processing_config.score_converter)
  return non_max_suppressor_fn, score_converter_fn

nms的构建,继续看post_processing.batch_multiclass_non_max_suppression这个函数

def _build_non_max_suppressor(nms_config):
  if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
    raise ValueError('iou_threshold not in [0, 1.0].')
  if nms_config.max_detections_per_class > nms_config.max_total_detections:
    raise ValueError('max_detections_per_class should be no greater than '
                     'max_total_detections.')

  non_max_suppressor_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=nms_config.score_threshold,
      iou_thresh=nms_config.iou_threshold,
      max_size_per_class=nms_config.max_detections_per_class,
      max_total_size=nms_config.max_total_detections)
  return non_max_suppressor_fn

不用说就是post_processing.batch_multiclass_non_max_suppression

#太长了,不复制了。和multiclass_non_max_suppression很相似,具体自己看

接下来是针对loss的build_hard_example_miner

def build_hard_example_miner(config,
                             classification_weight,
                             localization_weight):
#核心是 losses.HardExampleMiner,由于没有使用就不看了,需要的话自己看
  loss_type = None
  if config.loss_type == losses_pb2.HardExampleMiner.BOTH:
    loss_type = 'both'
  if config.loss_type == losses_pb2.HardExampleMiner.CLASSIFICATION:
    loss_type = 'cls'
  if config.loss_type == losses_pb2.HardExampleMiner.LOCALIZATION:
    loss_type = 'loc'

  max_negatives_per_positive = None
  num_hard_examples = None
  if config.max_negatives_per_positive > 0:
    max_negatives_per_positive = config.max_negatives_per_positive
  if config.num_hard_examples > 0:
    num_hard_examples = config.num_hard_examples
#只是一个初始化,具体的自己看
  hard_example_miner = losses.HardExampleMiner(
      num_hard_examples=num_hard_examples,
      iou_threshold=config.iou_threshold,
      loss_type=loss_type,
      cls_loss_weight=classification_weight,
      loc_loss_weight=localization_weight,
      max_negatives_per_positive=max_negatives_per_positive,
      min_negatives_per_image=config.min_negatives_per_image)
  return hard_example_miner

函数最后也就是最重要的rfcn_meta_arch.RFCNMetaArch,其实就是RFCNMetaArch的初始化。就是构建一个faster r-cnn的模型之后将第二阶段进行替换。

class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
  """R-FCN Meta-architecture definition."""

  def __init__(self,
               is_training,
               num_classes,
               image_resizer_fn,
               feature_extractor,
               first_stage_only,
               first_stage_anchor_generator,
               first_stage_atrous_rate,
               first_stage_box_predictor_arg_scope,
               first_stage_box_predictor_kernel_size,
               first_stage_box_predictor_depth,
               first_stage_minibatch_size,
               first_stage_positive_balance_fraction,
               first_stage_nms_score_threshold,
               first_stage_nms_iou_threshold,
               first_stage_max_proposals,
               first_stage_localization_loss_weight,
               first_stage_objectness_loss_weight,
               second_stage_rfcn_box_predictor,
               second_stage_batch_size,
               second_stage_balance_fraction,
               second_stage_non_max_suppression_fn,
               second_stage_score_conversion_fn,
               second_stage_localization_loss_weight,
               second_stage_classification_loss_weight,
               hard_example_miner,
               parallel_iterations=16):
    super(RFCNMetaArch, self).__init__(
        is_training,
        num_classes,
        image_resizer_fn,
        feature_extractor,
        first_stage_only,
        first_stage_anchor_generator,
        first_stage_atrous_rate,
        first_stage_box_predictor_arg_scope,
        first_stage_box_predictor_kernel_size,
        first_stage_box_predictor_depth,
        first_stage_minibatch_size,
        first_stage_positive_balance_fraction,
        first_stage_nms_score_threshold,
        first_stage_nms_iou_threshold,
        first_stage_max_proposals,
        first_stage_localization_loss_weight,
        first_stage_objectness_loss_weight,
        None,  # initial_crop_size is not used in R-FCN
        None,  # maxpool_kernel_size is not use in R-FCN
        None,  # maxpool_stride is not use in R-FCN
        None,  # fully_connected_box_predictor is not used in R-FCN.
        second_stage_batch_size,
        second_stage_balance_fraction,
        second_stage_non_max_suppression_fn,
        second_stage_score_conversion_fn,
        second_stage_localization_loss_weight,
        second_stage_classification_loss_weight,
        hard_example_miner,
        parallel_iterations)

    self._rfcn_box_predictor = second_stage_rfcn_box_predictor
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容