【TED】A 50-cent microscope that folds like origami——Manu Prakash

演讲者和他的学生发明了一种简易的显微镜,且只需50美分。这种显微镜的制作更像是一种折纸,从一张彩色的硬纸板上掰下各个部件,然后拼凑折叠在一起,就可以组成一个简易的显微镜。虽然这个显微镜看起来非常简单,但是它具备了普通显微镜所需要的一切功能。且适配于标准的样本切片。及时从高空落下,也能保证镜头不损坏。

The year is 1800. A curious little invention is being talked about. It's called a microscope. What it allows you to do is see tiny little lifeforms that are invisible to the naked eye. Soon comes the medical discoverythat many of these lifeforms are actually causes of terrible human diseases. Imagine what happened to the society when they realized that an English mom in her teacup actually was drinking a monster soup,not very far from here. This is from London.

0:48Fast forward 200 years. We still have this monster soup around, and it's taken hold in the developing countries around the tropical belt. Just for malaria itself, there are a million deaths a year, and more than a billion people that need to be tested because they are at risk for different species of malarial infections.

1:11Now it's actually very simple to put a face to many of these monsters. You take a stain, like acridine orange or a fluorescent stain or Giemsa, and a microscope, and you look at them. They all have faces.Why is that so, that Alex in Kenya, Fatima in Bangladesh, Navjoot in Mumbai, and Julie and Mary in Uganda still wait months to be able to diagnose why they are sick? And that's primarily because scalability of the diagnostics is completely out of reach. And remember that number: one billion.

1:48The problem lies with the microscope itself. Even though the pinnacle of modern science, research microscopes are not designed for field testing. Neither were they first designed for diagnostics at all.They are heavy, bulky, really hard to maintain, and cost a lot of money. This picture is Mahatma Gandhi in the '40s using the exact same setup that we actually use today for diagnosing T.B. in his ashram in Sevagram in India.

2:19Two of my students, Jim and James, traveled around India and Thailand, starting to think about this problem a lot. We saw all kinds of donated equipment. We saw fungus growing on microscope lenses.And we saw people who had a functional microscope but just didn't know how to even turn it on. What grew out of that work and that trip was actually the idea of what we call Foldscopes.

2:44So what is a Foldscope? A Foldscope is a completely functional microscope, a platform for fluorescence, bright-field, polarization, projection, all kinds of advanced microscopy built purely by folding paper. So, now you think, how is that possible? I'm going to show you some examples here, and we will run through some of them. It starts with a single sheet of paper. What you see here is all the possible components to build a functional bright-field and fluorescence microscope. So, there are three stages: There is the optical stage, the illumination stage and the mask-holding stage. And there are micro optics at the bottom that's actually embedded in the paper itself. What you do is, you take it on, and just like you are playing like a toy, which it is, I tab it off, and I break it off.

3:48This paper has no instructions and no languages. There is a code, a color code embedded, that tells you exactly how to fold that specific microscope. When it's done, it looks something like this, has all the functionalities of a standard microscope, just like an XY stage, a place where a sample slide could go, for example right here. We didn't want to change this, because this is the standard that's been optimized for over the years, and many health workers are actually used to this. So this is what changes, but the standard stains all remain the same for many different diseases. You pop this in. There is an XY stage,and then there is a focusing stage, which is a flexure mechanism that's built in paper itself that allows us to move and focus the lenses by micron steps.

4:41So what's really interesting about this object, and my students hate when I do this, but I'm going to do this anyway, is these are rugged devices. I can turn it on and throw it on the floor and really try to stomp on it. And they last, even though they're designed from a very flexible material, like paper.

5:02Another fun fact is, this is what we actually send out there as a standard diagnostic tool, but here in this envelope I have 30 different foldscopes of different configurations all in a single folder. And I'm going to pick one randomly. This one, it turns out, is actually designed specifically for malaria, because it has the fluorescent filters built specifically for diagnosing malaria. So the idea of very specific diagnostic microscopes comes out of this.

5:34So up till now, you didn't actually see what I would see from one of these setups. So what I would like to do is, if we could dim the lights, please, it turns out foldscopes are also projection microscopes. I have these two microscopes that I'm going to turn -- go to the back of the wall -- and just project, and this way you will see exactly what I would see. What you're looking at -- (Applause) — This is a cross-section of a compound eye, and when I'm going to zoom in closer, right there, I am going through the z-axis. You actually see how the lenses are cut together in the cross-section pattern. Another example, one of my favorite insects, I love to hate this one, is a mosquito, and you're seeing the antenna of a culex pipiens.Right there. All from the simple setup that I actually described.

6:29So my wife has been field testing some of our microscopes by washing my clothes whenever I forget them in the dryer. So it turns out they're waterproof, and -- (Laughter) — right here is just fluorescent water, and I don't know if you can actually see this. This also shows you how the projection scope works.You get to see the beam the way it's projected and bent.

6:55Can we get the lights back on again?

6:58So I'm quickly going to show you, since I'm running out of time, in terms of how much it costs for us to manufacture, the biggest idea was roll-to-roll manufacturing, so we built this out of 50 cents of parts and costs. (Applause) And what this allows us to do is to think about a new paradigm in microscopy, which we call use-and-throw microscopy. I'm going to give you a quick snapshot of some of the parts that go in. Here is a sheet of paper. This is when we were thinking about the idea. This is an A4 sheet of paper.These are the three stages that you actually see. And the optical components, if you look at the inset up on the right, we had to figure out a way to manufacture lenses in paper itself at really high throughputs,so it uses a process of self-assembly and surface tension to build achromatic lenses in the paper itself.So that's where the lenses go. There are some light sources. And essentially, in the end, all the parts line up because of origami, because of the fact that origami allows us micron-scale precision of optical alignment. So even though this looks like a simple toy, the aspects of engineering that go in something like this are fairly sophisticated.

8:06So here is another obvious thing that we would do, typically, if I was going to show that these microscopes are robust, is go to the third floor and drop it from the floor itself. There it is, and it survives.

8:19So for us, the next step actually is really finishing our field trials. We are starting at the end of the summer. We are at a stage where we'll be making thousands of microscopes. That would be the first time where we would be doing field trials with the highest density of microscopes ever at a given place.We've started collecting data for malaria, Chagas disease and giardia from patients themselves.

8:41And I want to leave you with this picture. I had not anticipated this before, but a really interesting linkbetween hands-on science education and global health. What are the tools that we're actually providingthe kids who are going to fight this monster soup for tomorrow? I would love for them to be able to just print out a Foldscope and carry them around in their pockets.

9:01Thank you.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,355评论 0 23
  • 为了让这段梦想没有遗憾, 今天请用一切的努力, 去守护这个未来的梦想, 因为有的梦想, 一生只能追逐一次。
    RRRoy阅读 117评论 0 0
  • 我不会去打扰你,你应该有自己的生活。我不应该也没有能力去干涉。希望你过得好。 昨天不知道为什么很想你,没有理由的想...
    静静的等待着阅读 192评论 0 0
  • 夕阳余晖里,我的影子被拖得很长很长,掩映在山树里错落有致的瓦房烟囱里飘起袅袅炊烟,农人荷锄而归。少倾,倦鸟归巢,老...
    青衫淡墨阅读 633评论 2 4
  • 2016.1.25 星期一 晴 今天和妈妈去面馆,人不多,我们随便找了一间空位置坐下,等面。...
    煜城卐阅读 241评论 0 0