写这篇文章的初衷,是想写篇Java和算法的实际应用,让算法不再玄乎,而Arrays.sort是很好的切入点,即分析Java的底层原理,又能学习里面的排序算法思想。希望能给在座各位在工作中或面试中一点帮助!转载请注明出处:Michael孟良
点进sort方法:
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {//QUICKSORT_THRESHOLD = 286
sort(a, left, right, true);
return;
}
数组一进来,会碰到第一个阀值QUICKSORT_THRESHOLD(286),注解上说,小过这个阀值的进入Quicksort (快速排序),其实并不全是,点进去sort(a, left, right, true);方法:
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
......
点进去后我们看到第二个阀值INSERTION_SORT_THRESHOLD(47),如果元素少于47这个阀值,就用插入排序,往下看确实如此:
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (int i = left, j = i; i < right; j = ++i) {
int ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
至于大过INSERTION_SORT_THRESHOLD(47)的,用一种快速排序的方法:
1.从数列中挑出五个元素,称为 “基准”(pivot);
2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
这是少于阀值QUICKSORT_THRESHOLD(286)的两种情况,至于大于286的,它会进入归并排序(Merge Sort),但在此之前,它有个小动作:
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
这里主要作用是看他数组具不具备结构:实际逻辑是分组排序,每降序为一个组,像1,9,8,7,6,8。9到6是降序,为一个组,然后把降序的一组排成升序:1,6,7,8,9,8。然后最后的8后面继续往后面找。。。
每遇到这样一个降序组,++count,当count大于MAX_RUN_COUNT(67),被判断为这个数组不具备结构(也就是这数据时而升时而降),然后送给之前的sort(里面的快速排序)的方法(The array is not highly structured,use Quicksort instead of merge sort.)。
如果count少于MAX_RUN_COUNT(67)的,说明这个数组还有点结构,就继续往下走下面的归并排序:
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
从这里开始,正式进入归并排序(Merge Sort)!
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
总结:
从上面分析,Arrays.sort并不是单一的排序,而是插入排序,快速排序,归并排序三种排序的组合,为此我画了个流程图:
算法的选择:
PS:关于排序算法的文章,推荐这两篇,个人觉得写得挺好,容易入门:
https://mp.weixin.qq.com/s/t0dsJeN397wO41pwBWPeTg
https://www.cnblogs.com/huangbw/p/7398418.html
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
时间复杂度按n越大算法越复杂来排的话:常数阶O(1)、对数阶O(logn)、线性阶O(n)、线性对数阶O(nlogn)、平方阶O(n²)、立方阶O(n³)、……k次方阶O(n的k次方)、指数阶O(2的n次方)。
O(nlogn)只代表增长量级,同一个量级前面的常数也可以不一样,不同数量下面的实际运算时间也可以不一样。数量非常小的情况下(就像上面说到的,少于47的),插入排序等可能会比快速排序更快。
所以数组少于47的会进入插入排序。
快排数据越无序越快(加入随机化后基本不会退化),平均常数最小,不需要额外空间,不稳定排序。
归排速度稳定,常数比快排略大,需要额外空间,稳定排序。
所以大于或等于47或少于286会进入快排,而在大于或等于286后,会有个小动作:“// Check if the array is nearly sorted”。这里第一个作用是先梳理一下数据方便后续的归并排序,第二个作用就是即便大于286,但在降序组太多的时候(被判断为没有结构的数据,The array is not highly structured,use Quicksort instead of merge sort.),要转回快速排序。
这就是jdk8中Arrays.sort的底层原理,自己在研究和分析中学到很多,希望能给各位工作中或面试中一些启发和帮助!Thanks for watching!