Java 实现消息摘要与数字签名

消息摘要

算法简述

定义

它是一个唯一对应一个消息或文本的固定长度的值,它由一个单向Hash加密函数对消息进行作用而产生。如果消息在途中改变了,则接收者通过对收到消息的新产生的摘要与原摘要比较,就可知道消息是否被改变了。因此消息摘要保证了消息的完整性。消息摘要采用单向Hash 函数将需加密的明文"摘要"成一串密文,这一串密文亦称为数字指纹(Finger Print)。它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这串摘要便可成为验证明文是否是"真身"的"指纹"了。

特点

消息摘要具有以下特点:

  1. 唯一性:数据只要有一点改变,那么再通过消息摘要算法得到的摘要也会发生变化。虽然理论上有可能会发生碰撞,但是概率极其低。
  2. 不可逆:消息摘要算法的密文无法被解密。
  3. 不需要密钥,可使用于分布式网络。
  4. 无论输入的明文有多长,计算出来的消息摘要的长度总是固定的。

原理

消息摘要,其实就是将需要摘要的数据作为参数,经过哈希函数(Hash)的计算,得到的散列值。

常用算法

消息摘要算法包括MD(Message Digest,消息摘要算法)SHA(Secure Hash Algorithm,安全散列算法)MAC(Message AuthenticationCode,消息认证码算法)共3大系列,常用于验证数据的完整性,是数字签名算法的核心算法。

MD5SHA1分别是MDSHA算法系列中最有代表性的算法。

如今,MD5已被发现有许多漏洞,从而不再安全。SHA算法比MD算法的摘要长度更长,也更加安全。

算法实现

MD5、SHA的范例

JDK中使用MD5和SHA这两种消息摘要的方式基本一致,步骤如下:

  1. 初始化MessageDigest对象
  2. 更新要计算的内容
  3. 生成摘要

范例

importjava.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import org.apache.commons.codec.binary.Base64;

public class MsgDigestDemo{
    public static void main(String args[]) throws NoSuchAlgorithmException, UnsupportedEncodingException {
        String msg = "Hello World!";

        MessageDigest md5Digest = MessageDigest.getInstance("MD5");
        // 更新要计算的内容
        md5Digest.update(msg.getBytes());
        // 完成哈希计算,得到摘要
        byte[] md5Encoded = md5Digest.digest();

        MessageDigest shaDigest = MessageDigest.getInstance("SHA");
        // 更新要计算的内容
        shaDigest.update(msg.getBytes());
        // 完成哈希计算,得到摘要
        byte[] shaEncoded = shaDigest.digest();

        System.out.println("原文: " + msg);
        System.out.println("MD5摘要: " + Base64.encodeBase64URLSafeString(md5Encoded));
        System.out.println("SHA摘要: " + Base64.encodeBase64URLSafeString(shaEncoded));
    }
}

输出

原文:Hello World!
MD5摘要: 7Qdih1MuhjZehB6Sv8UNjA
SHA摘要:Lve95gjOVATpfV8EL5X4nxwjKHE

HMAC的范例

importjavax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;

public class HmacCoder{
    /**
     * JDK支持HmacMD5, HmacSHA1,HmacSHA256, HmacSHA384, HmacSHA512
     */
    public enum HmacTypeEn {
        HmacMD5, HmacSHA1, HmacSHA256, HmacSHA384, HmacSHA512;
    }

    public static byte[] encode(byte[] plaintext, byte[] secretKey, HmacTypeEn type) throwsException {
        SecretKeySpec keySpec = new SecretKeySpec(secretKey, type.name());
        Mac mac = Mac.getInstance(keySpec.getAlgorithm());
        mac.init(keySpec);
        return mac.doFinal(plaintext);
    }

    public static void main(String[] args) throws Exception {
        String msg = "Hello World!";
        byte[] secretKey = "Secret_Key".getBytes("UTF8");
        byte[] digest = HmacCoder.encode(msg.getBytes(), secretKey, HmacTypeEn.HmacSHA256);
        System.out.println("原文: " + msg);
        System.out.println("摘要: " + Base64.encodeBase64URLSafeString(digest));
    }
}

输出

原文:Hello World!
摘要: b8-eUifaOJ5OUFweOoq08HbGAMsIpC3Nt-Yv-S91Yr4

数字签名

算法简述

数字签名算法可以看做是一种带有密钥的消息摘要算法,并且这种密钥包含了公钥和私钥。也就是说,数字签名算法是非对称加密算法和消息摘要算法的结合体。

特点

数字签名算法要求能够验证数据完整性、认证数据来源,并起到抗否认的作用。

原理

数字签名算法包含签名和验证两项操作,遵循私钥签名,公钥验证的方式。

签名时要使用私钥和待签名数据,验证时则需要公钥、签名值和待签名数据,其核心算法主要是消息摘要算法。

Java实现消息摘要与数字签名图

常用算法

RSA、DSA、ECDSA

算法实现

DSA的范例

数字签名有两个流程:签名和验证。

它们的前提都是要有一个公钥、密钥对。

签名

用私钥为消息计算签名

范例

用公钥验证摘要

importjava.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

import org.apache.commons.codec.binary.Base64;

public class DsaCoder{
    public static final String KEY_ALGORITHM = "DSA";

    public enum DsaTypeEn {
        MD5withDSA, SHA1withDSA
    }

    /**
     * DSA密钥长度默认1024位。 密钥长度必须是64的整数倍,范围在512~1024之间
     */
    private static final int KEY_SIZE = 1024;

    private KeyPair keyPair;

    public DsaCoder() throws Exception {
        keyPair = initKey();
    }

    public byte[] signature(byte[] data, byte[] privateKey) throws Exception {
        PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(privateKey);
        KeyFactory keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
        PrivateKey key =keyFactory.generatePrivate(keySpec);

        Signature signature = Signature.getInstance(DsaTypeEn.SHA1withDSA.name());
        signature.initSign(key);
        signature.update(data);
        return signature.sign();
    }

    public boolean verify(byte[] data, byte[] publicKey, byte[] sign) throws Exception {
        X509EncodedKeySpec keySpec = new X509EncodedKeySpec(publicKey);
        KeyFactory keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
        PublicKey key =keyFactory.generatePublic(keySpec);

        Signature signature = Signature.getInstance(DsaTypeEn.SHA1withDSA.name());
        signature.initVerify(key);
        signature.update(data);
        return signature.verify(sign);
    }

    private KeyPair initKey() throws Exception {
        // 初始化密钥对生成器
        KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(KEY_ALGORITHM);
        // 实例化密钥对生成器
        keyPairGen.initialize(KEY_SIZE);
        // 实例化密钥对
        return keyPairGen.genKeyPair();
    }

    public byte[] getPublicKey() {
        return keyPair.getPublic().getEncoded();
    }

    public byte[] getPrivateKey() {
        return keyPair.getPrivate().getEncoded();
    }

    public static void main(String[] args) throws Exception {
        String msg = "Hello World";
        DsaCoder dsa = new DsaCoder();
        byte[] sign = dsa.signature(msg.getBytes(), dsa.getPrivateKey());
        boolean flag = dsa.verify(msg.getBytes(), dsa.getPublicKey(), sign);
        String result = flag ? "数字签名匹配" : "数字签名不匹配";
        System.out.println("数字签名:" + Base64.encodeBase64URLSafeString(sign));
        System.out.println("验证结果:" + result);
    }
}

参考

《Core Java Volume2》

《Java加密与解密技术》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • 在开发应用过程中,客户端与服务端经常需要进行数据传输,涉及到重要隐私安全信息时,开发者自然会想到对其进行加密,即使...
    闲庭阅读 3,259评论 0 11
  • 这篇文章主要讲述在Mobile BI(移动商务智能)开发过程中,在网络通信、数据存储、登录验证这几个方面涉及的加密...
    雨_树阅读 2,331评论 0 6
  • 车里的月亮
    从前的骆驼阅读 172评论 0 1
  • 不敢再炫耀身边有谁 害怕你突然间离开让我尴尬
    Dagny_CJ阅读 98评论 0 0
  • 1 悠悠华夏,亘古芬芳,养育五谷,蕴藉花香。二十四个节气静卧于大地的胸口,优美横流,浩浩汤汤。 遥想当年今日,天子...
    后院的小小阅读 2,935评论 7 5