可编程网关 Pipy 第二弹:编程实现 Metrics 及源码解读

由于要给团队做一下关于 Flomesh 的分享,准备下材料。

“分享是最好的学习方法。”

上一回初探可编程网关 Pipy,领略了 Pipy 的“风骚”。从 Pipy 的 GUI 交互深入了解了 Pipy 的配置加载流程。

今天看一下 Pipy 如何实现 Metrics 的功能,顺便看下数据如何在多个 Pipeline 中进行流转。

前置

首先,需要对 Pipy 有一定的了解,如果不了解看一下上一篇文章

其次构建好 Pipy 环境,关于构建还是去看上一篇文章。

Metrics 功能实现

至于 Pipy 实现 Metrics 的方式,源码中就有,位于 test/006-metrics/pipy.js

  • 代理监听 6080 端口,后端服务在 8080 端口,Metrics 在 9090 端口
  • 共有 5 个 Pipeline:3 个 listen 类型,2 个 Pipeline 类型
  • 7 种过滤器:forkconnectdecodeHttpRequestonMessageStartdecodeHttpResponseencodeHttpRespnsereplaceMessage

贴一下源码:

pipy({
  _metrics: {
    count: 0,
  },
  _statuses: {},
  _latencies: [
    1,2,5,7,10,15,20,25,30,40,50,60,70,80,90,100,
    200,300,400,500,1000,2000,5000,10000,30000,60000,
    Number.POSITIVE_INFINITY
  ],
  _buckets: [],
  _timestamp: 0,
})

.listen(6080)
  .fork('in')
  .connect('127.0.0.1:8080')
  .fork('out')

// Extract request info
.pipeline('in')
  .decodeHttpRequest()
  .onMessageStart(
    () => (
      _timestamp = Date.now(),
      _metrics.count++
    )
  )

// Extract response info
.pipeline('out')
  .decodeHttpResponse()
  .onMessageStart(
    e => (
      ((status, latency, i) => (
        status = e.head.status,
        latency = Date.now() - _timestamp,
        i = _latencies.findIndex(t => latency <= t),
        _buckets[i]++,
        _statuses[status] = (_statuses[status]|0) + 1
      ))()
    )
  )

// Expose as Prometheus metrics
.listen(9090)
  .decodeHttpRequest()
  .replaceMessage(
    () => (
      (sum => new Message(
        [
          `count ${_metrics.count}`,
          ...Object.entries(_statuses).map(
            ([k, v]) => `status{code="${k}"} ${v}`
          ),
          ..._buckets.map((n, i) => `bucket{le="${_latencies[i]}"} ${sum += n}`)
        ]
        .join('\n')
      ))(0)
    )
  )
  .encodeHttpResponse()

// Mock service on port 8080
.listen(8080)
  .decodeHttpRequest()
  .replaceMessage(
    new Message('Hello!\n')
  )
  .encodeHttpResponse()

测试

使用 ab 做请求模拟 ab -n 2000 -c 10 http://localhost:6080/,然后检查下记录的指标。

$ http :9090 --body
count 2000
status{code="200"} 2000
bucket{le="1"} 1762
bucket{le="2"} 1989
bucket{le="5"} 1994
bucket{le="7"} 1999
bucket{le="10"} 2000

分析

TL;DR:本次示例的核心是 fork,从字面意思就很容易理解:新开一个处理分支(Pipeline),与主线并行执行。

src/inbound.cpp:104 109 处,Pipy 接收一个新的连接。

创建 ContextSession,并在 L178 处注册事件的处理器,然后在 L187 处开始接收数据。

#receive 方法中,定义了数据接收处理器:将读到的数据写入 buffer 中。这个 buffer 存储的是 Event类型数据。(所以说 Pipy 是基于数据流事件,将一些封装成了事件)

接着调用 Session#input

实际上调用的是 ReusableSession#input,调用 m_filters#process 方法。m_filters 实际上是 Filter 类型。

为什么只有一个 Filter?重点来了,看下 ReusableSession 的构造过程就能明白了(这里用了个反向迭代器)。output 是当前 Filter 处理完要执行的,实现类似链式的执行。

再回头看上面的示例,可以想象 fork 就是 Sessionm_filters

src/filters/fork.cpp:85,在 fork 过滤器中,在 1 处从 module 中获取到目标 Pipeline,并在 34 处 创建了新的 Session 并保存原 Session 的数据。

然后在 5 处将原 Event 输入到新的 Session 中,触发目标 PipelineFilter 链。值得注意的是,这里是基于事件的处理,并不是阻塞的。这就意味着,fork 的目标 pipline,与 fork 所在的 pipeline 是并行执行的。 在示例中,就是 Pipeline ‘in’ 与 主 Pipelineconnect 是并行执行的。

最终在 6 处,继续使用原 SessionFilter 链。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容

  • 有幸参加了 Flomesh[https://flomesh.cn/] 组织的workshop,了解了他们的 Pip...
    云原生指北阅读 298评论 0 0
  • 官网地址:https://www.elastic.co/cn/ 官网权威指南:https://www.elasti...
    Anwar_ec28阅读 6,625评论 0 11
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 124,018评论 2 7
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,030评论 0 4