话不多说,直接看代码
0x00 code
void testCode() {
NSObject *obj = [NSObject new];
__weak NSObject *weakObj = obj;
CFTypeRef cf_weakObj = (__bridge CFTypeRef)weakObj;
printf("-----%lu-----\n", CFGetRetainCount((__bridge CFTypeRef)weakObj));
printf("-----%lu-----\n", CFGetRetainCount(cf_weakObj));
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
testCode();
}
return 0;
}
看到输出结果后直接傻眼,脑子里迅速产生了几个疑问:
- 为什么输出的两个值不一样?
- 2是哪来的?
- 2后面是怎么变成1的?
0x01 debug
在testCode()
处打上断点,运行程序后控制台做如下操作(以下为部分截图):
先找到testCode的函数地址,接着反汇编。从截图的红框中可以看到调用了objc_loadWeakRetained
与_objc_release
这两个函数
既然调用了release,在ARC下,objc_loadWeakRetained调用后的retainCount必然增加了1。查看源码发现,objc_loadWeakRetained会调用rootRetain
,函数调用栈如下:
0x02 rootRetain
ALWAYS_INLINE id objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
if (isTaggedPointer()) return (id)this;
bool sideTableLocked = false;
bool transcribeToSideTable = false;
isa_t oldisa;
isa_t newisa;
do {
transcribeToSideTable = false;
oldisa = LoadExclusive(&isa.bits);
newisa = oldisa;
...
uintptr_t carry;
newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry); // extra_rc++
if (slowpath(carry)) {
if (!handleOverflow) {
ClearExclusive(&isa.bits);
return rootRetain_overflow(tryRetain);
}
if (!tryRetain && !sideTableLocked) sidetable_lock();
sideTableLocked = true;
transcribeToSideTable = true;
newisa.extra_rc = RC_HALF;
newisa.has_sidetable_rc = true;
}
} while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));
if (slowpath(transcribeToSideTable)) {
// Copy the other half of the retain counts to the side table.
sidetable_addExtraRC_nolock(RC_HALF);
}
if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
return (id)this;
}
这里确实有对isa
的extra_rc
字段进行加1操作,执行后的新旧isa对比如下:
newisa 的extra_rc 字段为1,而oldisa 的extra_rc 字段为0。如果extra_rc 字段溢出,会将extra_rc 设置为RC_HALF
,并将has_sidetable_rc
字段设置为true,显然has_sidetable_rc 是用来标识是否溢出的,溢出后会通过sidetable_addExtraRC_nolock
函数计算并重新存储retainCount的值。
0x03 isa_t
union isa_t {
isa_t() { }
isa_t(uintptr_t value) : bits(value) { }
Class cls;
uintptr_t bits;
#if defined(ISA_BITFIELD)
struct {
ISA_BITFIELD; // defined in isa.h
};
#endif
};
isa_t
是个union,如果定义了ISA_BITFIELD
,则会存在以下字段:
#if SUPPORT_PACKED_ISA
# if __arm64__
# define ISA_MASK 0x0000000ffffffff8ULL
# define ISA_MAGIC_MASK 0x000003f000000001ULL
# define ISA_MAGIC_VALUE 0x000001a000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 19
# define RC_ONE (1ULL<<45)
# define RC_HALF (1ULL<<18)
# elif __x86_64__
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
# else
# error unknown architecture for packed isa
# endif
// SUPPORT_PACKED_ISA
#endif
在arm64
与x86_64
架构下ISA_BITFIELD 是有定义的,并且两者shiftcls
与extra_rc
字段占用的bit不同,而他们的定义又受到SUPPORT_PACKED_ISA
控制:
#if (!__LP64__ || TARGET_OS_WIN32 || \
(TARGET_OS_SIMULATOR && !TARGET_OS_IOSMAC))
# define SUPPORT_PACKED_ISA 0
#else
# define SUPPORT_PACKED_ISA 1
#endif
显然,64位系统下的SUPPORT_PACKED_ISA 值是1
0x04 nonpointer字段的值是如何确定的
inline void objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
assert(!isTaggedPointer());
if (!nonpointer) {
isa.cls = cls;
} else {
assert(!DisableNonpointerIsa);
assert(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
assert(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
isa = newisa;
}
}
#if __ARM_ARCH_7K__ >= 2 || (__arm64__ && !__LP64__)
# define SUPPORT_INDEXED_ISA 1
#else
# define SUPPORT_INDEXED_ISA 0
#endif
如果参数nonpointer 的值为true,走else 分支。对于64位系统而言,SUPPORT_INDEXED_ISA 始终是0,所以bits被赋值为ISA_MAGIC_VALUE
。上文介绍isa 时说过,对于arm64来说,这个值为0x000001a000000001ULL
,对于x86_64来说,这个值为0x001d800000000001ULL
这两个值转成二进制后对应的首位都是1,而首位存储的就是isa_t 中nonpointer字段的值。
inline void objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
assert(!cls->instancesRequireRawIsa());
assert(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
在initInstanceIsa
中调用的initIsa
传递的nonpointer参数为true,所以64位系统下isa_t中nonpointer字段是1,而以下3个函数会调用initInstanceIsa
可见,在64位系统下,对于实例变量而言,isa_t中的nonpointer字段始终是1
0x05 引用计数器的获取
- (NSUInteger)retainCount {
return ((id)self)->rootRetainCount();
}
inline uintptr_t objc_object::rootRetainCount()
{
if (isTaggedPointer()) return (uintptr_t)this;
sidetable_lock();
isa_t bits = LoadExclusive(&isa.bits);
ClearExclusive(&isa.bits);
if (bits.nonpointer) {
uintptr_t rc = 1 + bits.extra_rc;
if (bits.has_sidetable_rc) {
rc += sidetable_getExtraRC_nolock();
}
sidetable_unlock();
return rc;
}
sidetable_unlock();
return sidetable_retainCount();
}
由于bits.nonpointer
等于1,所以会走if 内部逻辑,引用计数器的值等于1 + bits.extra_rc
,如果has_sidetable_rc 字段存储的是1,再通过sidetable_getExtraRC_nolock()
加上溢出部分的值
0x06 answer
有了以上认知,文章开头的几个疑问可以统一这样解释:
在ARC下,使用弱引用对象会调用objc_loadWeakRetained ,这个函数内会调用rootRetain,而rootRetain 会使isa 中的extra_rc 字段加1,从而导致引用计数器加1。objc_loadWeakRetained 之后会调用_objc_release ,CFTypeRef cf_weakObj = (__bridge CFTypeRef)weakObj
这句代码执行后,因rootRetain 引起的引用计数器加1已经被_objc_release 减1,所以CFGetRetainCount(cf_weakObj)
获取到的值是1。而CFGetRetainCount((__bridge CFTypeRef)weakObj)
执行时还未执行_objc_release 减1操作,所以获取的值是2
Have fun!