为什么说Spark SQL远远超越了MPP SQL

Apache Spark Future 吐槽Spark,其实我看了半天没看懂他在说啥。不过总体而言DataBricks公司目前很多的做法其实蛮合我的理念的。

前言

这里说的并不是性能,因为我没尝试对比过(下文会有简单的说明),而是尝试从某种更高一层次的的角度去看,为什么Spark SQL 是远远超越MPP SQL的。

Spark SQL 和 MPP SQL 其实不在一个维度上。简而言之,

  • MPP SQL 是 Spark SQL 的一个子集
  • Spark SQL 成为了一种跨越领域的交互形态

MPP SQL 是 Spark SQL 的一个子集

MPP SQL 要解决的技术问题是海量数据的查询问题。这里根据实际场景,你还可以加上一些修饰词汇,譬如秒级,Ad-hoc 之类。

在实际业务中

  1. 探索类业务,比如KPI多维分析,用户画像查询,数据科学家摸底数据等
  2. 运营类业务,比如报表(现在很多BI系统基本上完全基于SQL来构建),各种运营临时统计需求
  3. 分析类业务,不过这个会比较浅显。显然,真实的的分析应该主要依托一些统计类,机器学习等技术的支持
  4. 运维类业务,比如实时查询查看海量的系统日志等

MPP SQL 是有一定的性能优势的,从HAWQ,Impala 等都是基于MPP架构的。然而仅限于此。这些功能Spark SQL 目前都已经涵盖了,MPP SQL能做的事情,Spark SQL都完成的很漂亮。

依托于Spark 自身的全平台性(漂亮的DataSource API以及各个厂商的努力适配),Spark SQL 基本上可以对接任意多个异构数据源进行分析和查询。大家可参考我的一个简略实现 利用StreamingPro实现SQL-交互式查询

关于性能可以再多说两句:

  • 得益于一些具有复杂存储格式的文件的诞生,譬如CarbonData, Spark SQL 已经实现海量数据的秒级查询
  • Spark 自身通过Tungsten等项目的优化(尤其是代码自动生成),速度越来越生猛,而JVM譬如GC带来的问题则可以进一步通过off-heap的方式减少。

所以 Spark SQL 和 MPP SQL在性能上的差距也会越来越小。

Spark SQL 成为了一种跨越领域的交互形态

Spark 通过使用DS(2.0统一了DF 和 DS,使用一套SQL引擎)极大的增强了交互语意,意味着你可以用SQL(DS)作为统一的交互语言完成流式,批处理,交互式查询,机器学习等大数据领域常见场景。这在任何一个系统都是不多见的,也可见Spark团队的抽象能力。

引言中的那篇文章其实是作者吐槽Spark 团队对Spark core(RDD)那层关注太少了,所以开始发牢骚。

现在我们再回过头来看我们常见的一些业务:

  1. 实时分析类业务
  2. 探索类业务
  3. 分析预测类业务
  4. 运营报表类业务

首先这些业务都可以使用Spark 来实现。其次统一的交互接口都是DS(DF/SQL),并且DS/SQL 是一套极度易用并且广泛普及和接受的。

当然Spark 也不是一步就做到这点的,原来流式计算和批量计算就是两套API, DF 和 DS 也是两套API,后面经过发展,Databricks 团队也在积极思考和慢慢成长,经过先前已经有的积累,才做到现在的这一步。

所以本质上DS/SQL 已经成为除了RDD API 以外,另外一套通用的,统一的交互式API,涵盖了流式,批处理,交互式查询,机器学习等大数据领域。这也是我们第一次达成这样的统一,目前来看也仅在Spark平台上得以实现,它是的大数据的使用和学习门槛进一步降低,功在千秋。

RDD VS DS/SQL

DS/SQL 是一套数据类型首先,操作种类受限的表达语言,意味着Spark 团队可以做更好的性能优化,也意味着门槛更低,在易用性和性能上都能取得良好的平衡

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容