Learning to Extract Events from Knowledge Base Revisions

Alexander Konovalov Ohio State University konovalov.2@osu.edu

WWW2017

Motivation

knowledge base should not be viewed as a static snapshot, but instead a rapidly evolving set of facts that must changes as the world changes.

this paper demonstrate the feasibility of accurately identifying entity-transition-events, from real-time news and social media text streams, that drive changes to a knowledge base.

they use Wikipedia's edit history as distant supervision to learn event extractors, and evaluate the extractors based on their ability to predict online updates.

the weakly supervised event extraction models are capable of automatically recommending revisions to knowledge graph in realtime.

Challenge:

the reliance of weakly supervision learning methods in redundancy in news articlse : many sentences in the web are likely to mention context independent relationships. But there are a large number of redundant messages describing each significant in social networking websites such as Twitter ---could collect a lot of training data for weakly supervised event extraction.

Method

to predict knowledge-base edits si to learn extractors for events that alter properties of knowledge-base entities, by leveraging the revision history of Wikipedia's semi-structured data as weak supervision.

this work selected a set of 6 infobox attributes whose changes correspond to certain well-defined events happening in the world: CurrentTeam, LeaderName, StateRepresentative, Spouse, Predecessor, DeathPlace.

Datasets:

Twitter(filter, NER, POS)
Annotated Gigaword v.5 dataset: newswire

Step:

  • prepare for the data
  • matching Tweets and News sentences to Wikipedia edits( mainly surface-form matching and readily-available alias dictionaries )
  • training:
    use T_aligned as positive examples, T_unaligned and a subset of T_random as negative examples. Randomly sampled the subset of T_random to correspond to 90% of the testing data.

tweets that are written near the time of a knowledge graph revision are likely to mention an event that cause the change in state.

Evaluation

how well the method can predict actual edits to Wikipedia, in addition to a human evaluation of predicted edits using Amazon'd Mechanical Turk.

Results

Appendix

  • Amazon Mechanical Turk: is a marketplace for work. They give businesses and developers access to on-demand, scalable workforce. Workers selected from thousands tasks and work whenever it's convenient. https://www.mturk.com/mturk/welcome
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容

  • 想要看清事实,就需要一些疼痛。你必须明白,要走的人你留不住, 装睡的人你叫不醒,不爱你的人你感动不了。 不打扰,才...
    雪清羽阅读 489评论 0 51
  • 记得那次我们在路上偶遇,还相隔一段距离。你我不同路,但却能看到彼此,我们不约而同停下脚步。也许太远无法讲话,我们就...
    冰雪幽兰阅读 356评论 3 6
  • 人生的幸福点点 流连在残破不堪的夜里 可能快乐只是出于本真和陪伴吧 真的很开心啊 有两个好朋友的歌声相伴入眠 有长...
    葳蕤的蛮荒阅读 187评论 0 0
  • 2010年,银座毕业典礼 银座大学礼堂内,响起如潮的掌声,这次毕业典礼的压轴戏——冬雪乐队的表演终于开始了! 掌声...
    楽弧阅读 382评论 2 1