源将事件写到一个多或者多个通道中。
接收器只从一个通道接收事件。
代理可能会有多个源、通道与接收器。
flume-ng-channels
里面包含了filechannel,jdbcchannel,kafkachannel,memorychannel通道的实现。
flume-ng-clients
实现了log4j相关的几个Appender,使得log4j的日志输出可以直接发送给flume-agent;其中有一个LoadBalancingLog4jAppender的实现,提供了多个flume-agent的load balance和ha功能,采用flume作为日志收集的可以考虑将这个appender引入内部的log4j中。
flume-ng-configuration
这个主要就是Flume配置信息相关的类,包括载入flume-config.properties配置文件并解析。其中包括了Source的配置,Sink的配置,Channel的配置,在阅读源码前推荐先梳理这部分关系再看其他部分的。
flume-ng-core
flume整个核心框架,包括了各个模块的接口以及逻辑关系实现。其中instrumentation是flume内部实现的一套metric机制,metric的变化和维护,其核心也就是在MonitoredCounterGroup中通过一个Map来实现metric的计量。ng-core下几乎大部分代码任然几种在channel、sink、source几个子目录下,其他目录基本完成一个util和辅助的功能。
flume-ng-node
实现启动flume的一些基本类,包括main函数的入口(Application.java中)。在理解configuration之后,从application的main函数入手,可以较快的了解整个flume的代码。
flume-ng启动文件介绍
################################
# constants
################################
#设置常量值,主要是针对不同的参数执行相应的类,以启动Flume环境
FLUME_AGENT_CLASS="org.apache.flume.node.Application"
FLUME_AVRO_CLIENT_CLASS="org.apache.flume.client.avro.AvroCLIClient"
FLUME_VERSION_CLASS="org.apache.flume.tools.VersionInfo"
FLUME_TOOLS_CLASS="org.apache.flume.tools.FlumeToolsMain"
#真正启动Flume环境的方法
run_flume() {
local FLUME_APPLICATION_CLASS
if [ "$#" -gt 0 ]; then
FLUME_APPLICATION_CLASS=$1
shift
else
error "Must specify flume application class" 1
fi
if [ ${CLEAN_FLAG} -ne 0 ]; then
set -x
fi
#执行这一行命令,执行相应的启动类,比如org.apache.flume.node.Application
$EXEC $JAVA_HOME/bin/java $JAVA_OPTS $FLUME_JAVA_OPTS "${arr_java_props[@]}" -cp "$FLUME_CLASSPATH" \
-Djava.library.path=$FLUME_JAVA_LIBRARY_PATH "$FLUME_APPLICATION_CLASS" $*
}
################################
# main
################################
# set default params
# 在启动的过程中使用到的参数
FLUME_CLASSPATH=""
FLUME_JAVA_LIBRARY_PATH=""
#默认占用堆空间大小,这一块都可以根据JVM进行重新设置
JAVA_OPTS="-Xmx20m"
LD_LIBRARY_PATH=""
opt_conf=""
opt_classpath=""
opt_plugins_dirs=""
arr_java_props=()
arr_java_props_ct=0
opt_dryrun=""
# 根据不同的参数,执行不同的启动类,每个常量所对应的类路径在代码前面有过介绍。
if [ -n "$opt_agent" ] ; then
run_flume $FLUME_AGENT_CLASS $args
elif [ -n "$opt_avro_client" ] ; then
run_flume $FLUME_AVRO_CLIENT_CLASS $args
elif [ -n "${opt_version}" ] ; then
run_flume $FLUME_VERSION_CLASS $args
elif [ -n "${opt_tool}" ] ; then
run_flume $FLUME_TOOLS_CLASS $args
else
error "This message should never appear" 1
fi
主要是run-flume语句以及指定的启动类
从bin/flume-ng这个shell脚本可以看到Flume的起始于org.apache.flume.node.Application类,这是flume的main函数所在。main方法首先会先解析shell命令,如果指定的配置文件不存在就抛出异常。
main方法首先校验shell命令行的代码,解析
./bin/flume-ng agent -n agent -c conf -f conf/hw.conf -Dflume.root.logger=INFO,console
语句,然后加载配置文件。
根据命令中含有"no-reload-conf"参数,决定采用那种加载配置文件方式:
一、没有此参数,会动态加载配置文件,默认每30秒加载一次配置文件,因此可以动态修改配置文件;
二、有此参数,则只在启动时加载一次配置文件。实现动态加载功能采用了发布订阅模式,使用guava中的EventBus实现。
三、PropertiesFileConfigurationProvider这个类是配置文件加载类,PollingPropertiesFileConfigurationProvider类中,它实现了LifecycleAware接口,而这个接口是掌管整个Flume生命周期的一个核心接口,LifecycleSupervisor实现了这个接口,通过上面代码中application.start方法触发LifecyleAware的start方法,LifecycleAware接口定义了start和stop方法。
时序调用图:
PollingPropertiesFileConfigurationProvider.start()方法会启动一个单线程FileWatcherRunnable每隔30s去加载一次配置文件。
如何解析文件?
1、用agent.sources.s1.command=s1来举例:变量prefix指的是:sink,source,channel等关键字。
2、parseConfigKey方法,首先根据prefix判断prefix的后面,有少多字符。比如:sources.s1.command,在sources后面s1.command一共有10个字符。
3、解析出name变量,如s1,这个是自己定义的。
4、解析出configKey固定关键字,如command,这个是系统定义的。
5、封装new ComponentNameAndConfigKey(name, configKey)返回。
6、将sources、channel、sink配置信息,分别存放到sourceContextMap、channelConfigMap、sinkConfigMap三个HashMap,最后统一封装到AgentConfiguration对象中,然后再把AgentConfiguration存放到agentConfigMap中,key是agentName。
source - channelProcessor - channel - sink -sinkgroup
Source {
ChannelProcessor {
Channel ch1
Channel ch2
…
}
}
Sink {
Channel ch;
}
SinkGroup {
Channel ch;
Sink s1;
Sink s2;
…
}
1、Source组件
Source是数据源的总称,设定好源后,数据将源源不断的被抓取或者被推送。常见的数据源有:ExecSource,KafkaSource,HttpSource,NetcatSource,JmsSource,AvroSource等等。所有的数据源统一实现一个接口类如下:
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Source extends LifecycleAware, NamedComponent {
/**
* Specifies which channel processor will handle this source's events.
*
* @param channelProcessor
*/
public void setChannelProcessor(ChannelProcessor channelProcessor);
/**
* Returns the channel processor that will handle this source's events.
*/
public ChannelProcessor getChannelProcessor();
}
Source提供了两种机制: PollableSource(轮询拉取)和EventDrivenSource(事件驱动):
上图展示的Source继承关系类图。通过类图我们可以看到NetcatSource,ExecSource和HttpSource属于事件驱动模型。KafkaSource,SequenceGeneratorSource和JmsSource属于轮询拉取模型。Source接口继承了LifecycleAware接口,它的的所有逻辑的实现在接口的start和stop方法中进行。下图是类关系方法图:
Source接口定义的是最终的实现过程,如抓取日志,这个抓取的过程和实际操作就是在对应的Source实现中,比如:ExecSource。那么这些Source实现由谁来驱动的呢?现在我们将介绍SourceRunner类。看一下类继承结构图:
我们看一下PollableSourceRunner和EventDrivenSourceRunner的具体实现:
@Override //PollableSourceRunner:
public void start() {
PollableSource source = (PollableSource) getSource();
ChannelProcessor cp = source.getChannelProcessor();
cp.initialize();
source.start();
runner = new PollingRunner();
runner.source = source;
runner.counterGroup = counterGroup;
runner.shouldStop = shouldStop;
runnerThread = new Thread(runner);
runnerThread.setName(getClass().getSimpleName() + "-" +
source.getClass().getSimpleName() + "-" + source.getName());
runnerThread.start();
lifecycleState = LifecycleState.START;
}
@Override //EventDrivenSourceRunner
public void start() {
Source source = getSource();
ChannelProcessor cp = source.getChannelProcessor();
cp.initialize();
source.start();
lifecycleState = LifecycleState.START;
}
注:其实所有的Source实现类内部都维护着线程,执行source.start()其实就是启动了相应的线程。
2、Channel组件
Channel用于连接Source和Sink,Source将日志信息发送到Channel,Sink从Channel消费日志信息;Channel是中转日志信息的一个临时存储,保存有Source组件传递过来的日志信息。先看代码如下:AbstractConfigurationProvider的loadSources()
ChannelSelectorConfiguration selectorConfig =
config.getSelectorConfiguration();
ChannelSelector selector = ChannelSelectorFactory.create(
sourceChannels, selectorConfig);
ChannelProcessor channelProcessor = new ChannelProcessor(selector);
Configurables.configure(channelProcessor, config);
source.setChannelProcessor(channelProcessor);
ChannelSelectorFactory.create方法实现如下:
public static ChannelSelector create(List<Channel> channels,
ChannelSelectorConfiguration conf) {
String type = ChannelSelectorType.REPLICATING.toString();
if (conf != null) {
type = conf.getType();
}
ChannelSelector selector = getSelectorForType(type);
selector.setChannels(channels);
Configurables.configure(selector, conf);
return selector;
}
其中我们看一下ChannelSelectorType这个枚举类,包括了几种类型:
public enum ChannelSelectorType {
/**
* Place holder for custom channel selectors not part of this enumeration.
*/
OTHER(null),
/**
* Replicating channel selector.
*/
REPLICATING("org.apache.flume.channel.ReplicatingChannelSelector"),
/**
* Multiplexing channel selector.
*/
MULTIPLEXING("org.apache.flume.channel.MultiplexingChannelSelector");
ChannelSelector的类结构图如下所示:
注:RelicatingChannelSelector和MultiplexingChannelSelector是二个通道选择器,第一个是复用型通道选择器,也就是的默认的方式,会把接收到的消息发送给其他每个channel。第二个是多路通道选择器,这个会根据消息header中的参数进行通道选择。
Channel是什么?:
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Channel extends LifecycleAware, NamedComponent {
/**
* <p>Puts the given event into the channel.</p>
* <p><strong>Note</strong>: This method must be invoked within an active
* {@link Transaction} boundary. Failure to do so can lead to unpredictable
* results.</p>
* @param event the event to transport.
* @throws ChannelException in case this operation fails.
* @see org.apache.flume.Transaction#begin()
*/
public void put(Event event) throws ChannelException;
/**
* <p>Returns the next event from the channel if available. If the channel
* does not have any events available, this method must return {@code null}.
* </p>
* <p><strong>Note</strong>: This method must be invoked within an active
* {@link Transaction} boundary. Failure to do so can lead to unpredictable
* results.</p>
* @return the next available event or {@code null} if no events are
* available.
* @throws ChannelException in case this operation fails.
* @see org.apache.flume.Transaction#begin()
*/
public Event take() throws ChannelException;
/**
* @return the transaction instance associated with this channel.
*/
public Transaction getTransaction();
}
注:put方法是用来发送消息,take方法是获取消息,transaction是用于事务操作。类结构图如下:
3、Sink组件
Sink负责取出Channel中的消息数据,进行相应的存储文件系统,数据库,或者提交到远程服务器。Sink在设置存储数据时,可以向文件系统中,数据库中,hadoop中储数据,在日志数据较少时,可以将数据存储在文件系中,并且设定一定的时间间隔保存数据。在日志数据较多时,可以将相应的日志数据存储到Hadoop中,便于日后进行相应的数据分析。
Sink接口类内容如下:
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Sink extends LifecycleAware, NamedComponent {
/**
* <p>Sets the channel the sink will consume from</p>
* @param channel The channel to be polled
*/
public void setChannel(Channel channel);
/**
* @return the channel associated with this sink
*/
public Channel getChannel();
/**
* <p>Requests the sink to attempt to consume data from attached channel</p>
* <p><strong>Note</strong>: This method should be consuming from the channel
* within the bounds of a Transaction. On successful delivery, the transaction
* should be committed, and on failure it should be rolled back.
* @return READY if 1 or more Events were successfully delivered, BACKOFF if
* no data could be retrieved from the channel feeding this sink
* @throws EventDeliveryException In case of any kind of failure to
* deliver data to the next hop destination.
*/
public Status process() throws EventDeliveryException;
public static enum Status {
READY, BACKOFF
}
}
Sink是通过如下代码进行的创建:
Sink sink = sinkFactory.create(comp.getComponentName(), comp.getType());
DefaultSinkFactory.create方法如下:
@Override
public Sink create(String name, String type) throws FlumeException {
Preconditions.checkNotNull(name, "name");
Preconditions.checkNotNull(type, "type");
logger.info("Creating instance of sink: {}, type: {}", name, type);
Class<? extends Sink> sinkClass = getClass(type);
try {
Sink sink = sinkClass.newInstance();
sink.setName(name);
return sink;
} catch (Exception ex) {
throw new FlumeException("Unable to create sink: " + name
+ ", type: " + type + ", class: " + sinkClass.getName(), ex);
}
}
**注:Sink是通过SinkFactory工厂来创建,提供了DefaultSinkFactory默认工厂,程序会查找org.apache.flume.conf.sink.SinkType这个枚举类找到相应的Sink处理类,比如:org.apache.flume.sink.LoggerSink,如果没找到对应的处理类,直接通过Class.forName(className)进行直接查找实例化实现类。 **
Sink的类结构图如下:
与ChannelProcessor处理类对应的是SinkProcessor,由SinkProcessorFactory工厂类负责创建,SinkProcessor的类型由一个枚举类提供,看下面代码:
public enum SinkProcessorType {
/**
* Place holder for custom sinks not part of this enumeration.
*/
OTHER(null),
/**
* Failover processor
*
* @see org.apache.flume.sink.FailoverSinkProcessor
*/
FAILOVER("org.apache.flume.sink.FailoverSinkProcessor"),
/**
* Standard processor
*
* @see org.apache.flume.sink.DefaultSinkProcessor
*/
DEFAULT("org.apache.flume.sink.DefaultSinkProcessor"),
/**
* Load balancing processor
*
* @see org.apache.flume.sink.LoadBalancingSinkProcessor
*/
LOAD_BALANCE("org.apache.flume.sink.LoadBalancingSinkProcessor");
SinkProcessor的类结构图如下:
说明:1、FailoverSinkProcessor是故障转移处理器,当sink从通道拿数据信息时出错进行的相关处理,代码如下:
@Override
public Status process() throws EventDeliveryException {
// Retry any failed sinks that have gone through their "cooldown" period
Long now = System.currentTimeMillis();
while (!failedSinks.isEmpty() && failedSinks.peek().getRefresh() < now) {
FailedSink cur = failedSinks.poll();
Status s;
try {
s = cur.getSink().process();
if (s == Status.READY) {
liveSinks.put(cur.getPriority(), cur.getSink());
activeSink = liveSinks.get(liveSinks.lastKey());
logger.debug("Sink {} was recovered from the fail list",
cur.getSink().getName());
} else {
// if it's a backoff it needn't be penalized.
failedSinks.add(cur);
}
return s;
} catch (Exception e) {
cur.incFails();
failedSinks.add(cur);
}
}
Status ret = null;
while (activeSink != null) {
try {
ret = activeSink.process();
return ret;
} catch (Exception e) {
logger.warn("Sink {} failed and has been sent to failover list",
activeSink.getName(), e);
activeSink = moveActiveToDeadAndGetNext();
}
}
throw new EventDeliveryException("All sinks failed to process, " +
"nothing left to failover to");
}
2、LoadBalancingSinkProcessor是负载Sink处理器首先我们和ChannelProcessor一样,我们也要重点说明一下SinkSelector这个选择器。先看一下LoadBalancingSinkProcessor extends AbstractSinkProcessor的configure方法的部分代码:
public interface SinkSelector extends Configurable, LifecycleAware {
void setSinks(List<Sink> sinks);
Iterator<Sink> createSinkIterator();
void informSinkFailed(Sink failedSink);
}
if (selectorTypeName.equalsIgnoreCase(SELECTOR_NAME_ROUND_ROBIN)) {
selector = new RoundRobinSinkSelector(shouldBackOff);
} else if (selectorTypeName.equalsIgnoreCase(SELECTOR_NAME_RANDOM)) {
selector = new RandomOrderSinkSelector(shouldBackOff);
} else {
try {
@SuppressWarnings("unchecked")
Class<? extends SinkSelector> klass = (Class<? extends SinkSelector>)
Class.forName(selectorTypeName);
selector = klass.newInstance();
} catch (Exception ex) {
throw new FlumeException("Unable to instantiate sink selector: "
+ selectorTypeName, ex);
}
}
结合上面的代码,再看类结构图如下:
注:RoundRobinSinkSelector是轮询选择器,RandomOrderSinkSelector是随机分配选择器。
以KafkaSink为例看一下Sink里面的具体实现:
public Status process() throws EventDeliveryException {
Status result = Status.READY;
Channel channel = getChannel();
Transaction transaction = null;
Event event = null;
String eventTopic = null;
String eventKey = null;
try {
long processedEvents = 0;
transaction = channel.getTransaction();
transaction.begin();
messageList.clear();
for (; processedEvents < batchSize; processedEvents += 1) {
event = channel.take();
if (event == null) {
// no events available in channel
break;
}
byte[] eventBody = event.getBody();
Map<String, String> headers = event.getHeaders();
if ((eventTopic = headers.get(TOPIC_HDR)) == null) {
eventTopic = topic;
}
eventKey = headers.get(KEY_HDR);
if (logger.isDebugEnabled()) {
logger.debug("{Event} " + eventTopic + " : " + eventKey + " : "
+ new String(eventBody, "UTF-8"));
logger.debug("event #{}", processedEvents);
}
// create a message and add to buffer
KeyedMessage<String, byte[]> data = new KeyedMessage<String, byte[]>
(eventTopic, eventKey, eventBody);
messageList.add(data);
}
// publish batch and commit.
if (processedEvents > 0) {
long startTime = System.nanoTime();
producer.send(messageList);
long endTime = System.nanoTime();
counter.addToKafkaEventSendTimer((endTime-startTime)/(1000*1000));
counter.addToEventDrainSuccessCount(Long.valueOf(messageList.size()));
}
transaction.commit();
} catch (Exception ex) {
String errorMsg = "Failed to publish events";
logger.error("Failed to publish events", ex);
result = Status.BACKOFF;
if (transaction != null) {
try {
transaction.rollback();
counter.incrementRollbackCount();
} catch (Exception e) {
logger.error("Transaction rollback failed", e);
throw Throwables.propagate(e);
}
}
throw new EventDeliveryException(errorMsg, ex);
} finally {
if (transaction != null) {
transaction.close();
}
}
return result;
}
注:方法从channel中不断的获取数据,然后通过Kafka的producer生产者将消息发送到Kafka里面